Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We consider the problem [wzór] posed in Ω x (0,+∞). Here Ω ⊂ Rn is a an open smooth bounded domain and φ is like [wzór] and ε = š1. We prove, in certain conditions on f and φ that there is absence of global solutions. The method of proof relies on a simple analysis of the ordinary inequality of the type w'' + δw' ≥ αw + βwp. It is also shown that a global positive solution, when it exists, must decay at least exponentially.
Wydawca
Czasopismo
Rocznik
Tom
Strony
103--121
Opis fizyczny
Bibliogr. 20 poz.
Bibliografia
- [1] Ablowitz, M. J., Segur, H., Exact linearization of a Painleve transcendent, Phys. Rev. Lett. 38 (1977), 1103-1106.
- [2] D’Ancona, P., Spagnolo, S., A class of nonlinear hyperbolic problems with global solutions, Arch. Rational Mech. Anal. 124 (1993), 219-281.
- [3] Ball, J. M., Remarks on blow-up and nonexistence theorems for non linear evolution equations, Quart. J. Math. Oxford Ser. (2) 28 (1977), 473-486.
- [4] Bellman, R., Stability Theory of Differential Equations, McGraw-Hill, New York, 1953.
- [5] Brada, A., Comportement asymptotique de solutions d ’equations elliptiques semi lineares dans un cylindre, Asymptotic Anal. 10 (1995), 335-366.
- [6] Callegari, E., Manfrin, R., Global small solutions to Klein Gordon type equations with non-local non-linearities, Nonlinear Anal. 38 (1999), 505-526.
- [7] Eloulaimi, R., Guedda, M., Nonexistence of global solutions of nonlinear wave equations, Portugal. Math. 58(4) (2001), 449-460.
- [8] Gmira, A., Guedda, M., Classification of solutions to a class of nonlinear differential equations, Int. J. Differ. Equ. Appl. 1(2) (2000), 223-238.
- [9] Greenberg, J. M., Hu, S. C., The initial value problem for stretched string, Quart. Appl. Math. 38 (1980), 280-311.
- [10] Guedda, M., Kirane, M., Nonexistence of global solutions to nonlinear hyperbolic inequalities with a singularity, Preprint LAMFA (2000), University de Picardie Jules Verne, Prance.
- [11] Hastings, S. P., McLeod, J. B., A boundary value problem associated with the second Painleve transcendent and the Korteweg-de Vries equation, Arch. Rational Mech. Anal. 73(1) (1980), 31-51.
- [12] Guedda, M., Labani, H., Nonexistence of global solutions to a class of nonlinear wave equations with dynamic boundary conditions, Bull. Belg. Math. Soc. Simon Stevin 9(1) (2002), 39-46.
- [13] Lions, J. L., On some questions in boundary value problems of mathematical physics. Contemporary developments in continuum mechanics and partial differential equations, Proc. Internat. Sympos., Inst. Mat., Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1977, pp. 284-346, North-Holland Math. Stud. 30, North-Holland, Amsterdam-New York, 1978.
- [14] Miura, R. M., The Korteweg - de Vries equation; a survey of results, SIAM Rev. 18 (1976), 412-459.
- [15] Oleinik, O., Some Asymptotic Problems in the Theory of Partial Differential Equations, Lincei Lectures, Cambridge University Press, Cambridge, 1996.
- [16] Ono, K., Global existence, decay, and blowup of solutions for some mildly degenerate nonlinear Kirchhoff strings, J. Differential Equations, 137(2) (1997), 273-301.
- [17] Pohozaev, S. L, On a class of quasilinear hyperbolic equations, Mat. Sb. (N. S.) 95 (1975), 152-166.
- [18] Souplet, Ph., Nonexistence of global solutions to some differential inequalities of the second order and applications, Portugal. Math. 52(3) (1995), 289-299.
- [19] Vasconcellos, C. F., Teixeira, L. M., Strong solution and exponential decay for a nonlinear hyperbolic equation, Appl. Anal. 51(1-4) (1993), 155-173.
- [20] Veron, L., Coercivite et propriete regularisante de semi-groupes non lineaires dans les espaces de Banach, Publ. Math. Fac. Sci. Besanęon 3 (1976-1977).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0014-0021