Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the paper we formulate an axiom CPAgame prism, which is the most prominent version of the Covering Property Axiom CPA, and discuss several of its implications. In particular, we show that it implies that the following cardinal characteristics of continuum are equal to ω 1 , while c = ω 2 : the independence number i, the reaping number r, the almost disjoint number a, and the ultrafilter base number u. We will also show that CPAgame prism, implies the existence of crowded and selective ultrafilters as well as nonselective P-points. In addition we prove that under CPAgame prism every selective ultrafilter is ω 1-generated. The paper finishes with the proof that CPAgame prism holds in the iterated perfect set model.
Wydawca
Czasopismo
Rocznik
Tom
Strony
19--55
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
autor
- Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310 USA
autor
- Department of Mathematics, University of Wroclaw, pl. Grunwaldzki 2/4, 50-384 Wroclaw, Poland
Bibliografia
- [1] Bartoszyński, T., Judah, H., Set Theory. On the Structure of the Real Line, A К Peters Ltd, Wellesley, MA, 1995.
- [2] Baumgartner, J., Laver, R., Rerated perfect-set forcing, Ann. Math. Logic 17 (1979), 271-288.
- [3] Blass, A., Combinatorial cardinal characteristics of the continuum, in the “Handbook of Set Theory” (eds. M. Foreman, M. Magidor, and A. Kanamori), to appear.
- [4] Brodskil, M. L., On some properties of sets of positive measure, Uspekhi Mat. Nauk (N.S.) 4, no. 3(31) (1949), 136-138.
- [5] Bukovský, L., Kholshchevnikova, N. N., Repicky, M., Thin sets of harmonic analysis and infinite combinatorics, Real Anal. Exchange 20(2) (1994-95), 454-509.
- [6] Ciesielski, K., Set Theory for the Working Mathematician, London Math. Soc. Stud. Texts 39, Cambridge Univ. Press, Cambridge, 1997.
- [7] Ciesielski, K., Pawlikowski, J., Small coverings with smooth functions under the Covering Property Axiom, preprint*5, 2002.
- [8] Ciesielski, K, Pawlikowski, J., Covering Property Axiom CPA. A Combinatorial Core of the Rerated Perfect Set Model, Cambridge Tracts in Math., Cambridge Univ. Press, Cambridge, to appear*.
- [9] Ciesielski, K., Wojciechowski, J., Sums of connectivity functions on Rn, Proc. London Math. Soc. (3) 76(2) (1998), 406-426. (Preprint* available.)
- [10] Coplakova, C., Hart, K. P., Crowded rational ultrafilters, Topology Appl. 97 (1999), 79-84.
- [11] van Douwen, E. K., The integers and topology, in “Handbook of Set-Theoretic Topology” (K. Kunen and J.E. Vaughan, eds.), North-Holland, Amsterdam, 1984, 111-167.
- [12] van Douwen, E. K., Better closed ultrafilters on Q, Topology Appl. 47(3) (1992), 173-177.
- [13] Eggleston, H. G., Two measure properties of Cartesian product sets, Quart. J. Math. Oxford Ser. (2) 5 (1954), 108-115.
- [14] Farah, L, Semiselective coideals, Mathematika 45 (1998), 79-103.
- [15] Grigorieff, S., Combinatorics on ideals and forcing, Ann. Math. Logic 3(4) (1971), 363-394.
- [16] Hart, K. P., Ultrafilters of character ω1 J. Symbolic Logic 54(1) (1989), 1-15.
- [17] Hrušák, M., private communication (e-mail to K. Ciesielski), March 2000.
- [18] Jech, T., Set Theory, Academic Press, New York, 1978.
- [19] Kanovei, V., Non-Glimm-Effros equivalence relations at second projective level, Fund. Math. 154 (1997), 1-35.
- [20] Kechris, A. S., Classical Descriptive Set Theory, Springer-Verlag, Berlin 1995
- [21] Kunen, K., Some points in /3N, Math. Proc. Cambridge Philos. Soc. 80(3) (1976), 385-398.
- [22] Laver, R., Products of infinitely many perfect trees, J. London Math. Soc. (2) 29 (1984), 385-396.
- [23] Miller, A. W., Mapping a set of reals onto the reals, J. Symbolic Logic 48 (1983), 575-584.
- [24] Miller, A. W., Special subsets of the real line, in “Handbook of Set-Theoretic Topology” (K. Kunen and J.E. Vaughan, eds.), North-Holland, Amsterdam, 1984, 201-233.
- [25] Steprans, J., Sums of Darboux and continuous functions, Fund. Math. 146 (1995), 107-120.
- [26] Vaughan, J. E., Small uncountable cardinals and topology, in “Open Problems in Topology” (J. van Mill and G. M. Reed, eds.), North-Holland, Amsterdam, 1990, 195-216.
- [27] Zapletal, J., Cardinal Invariants and Descriptive Set Theory, Mem. Amer. Math. Soc., to appear
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0014-0018