PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mathematical analysis and optimal control problems for the perturbation of the primitive equations of the ocean with vertical viscosity

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we consider an oceanic domain in R3, in which there exists, at initial time, a current Uo, a pressure po and a density po. The perturbation U, p and p of the velocity, the pressure and the density are induced by a perturbation of the mean windstress. The equations are of Navier-Stokes type for the velocity and pressure, of transport-diffusion type for the density. They are linearized around a given mean circulation and modified by the physical assumptions including the Boussinesq approximation and the Hydrostatic approximation with vertical viscosity. The existence and uniqueness of the solution for the variational problem are studied for the three-dimensional problem, and for the two-dimensional cyclic problem derived by assuming a sinusoidal .x-dependence for the perturbation of mean flow. The latter corresponds to a modelization of tropical instability waves which are illustrated by El Nino phenomenon.
Wydawca
Rocznik
Strony
153--200
Opis fizyczny
Bibliogr. 26 poz.
Twórcy
Bibliografia
  • [1] Adams, R. A., Sobolev Spaces, Academic Press, New York, 1975.
  • [2] Agmon, S., Douglis, A., Nirenberg, L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II, Comm. Pure Appl. Math. 17 (1964), 35-92.
  • [3] Belmiloudi, A., Resolution of optimal control problem for a perturbation linearized Navier-Stokes type equations, Application of mathematics in engineering and economics (Sozopol), Proc. XXII Summer School (1996), Tech. Univ. Sofia, 39-51.
  • [4] Belmiloudi, A., Method of characteristics and error estimates of the perturbation of a given mean flow, Applications of mathematics in engineering and economics (Sozopol), Proc. XXII Summer School (1996), Tech. Univ. Sofia, 25-38.
  • [5] Belmiloudi, A., A nonlinear optimal control problem for assimilation of surface data in a Navier-Stokes type equations related to oceanography, Numer. Funct. Anal. Optim. 20 (1999), 1-26.
  • [6] Belmiloudi, A., Regularity results and optimal control problems for the perturbation of Boussinesq equations of the ocean, Numer. Funct. Anal. Optim. 21 (2000), 623-651.
  • [7] Belmiloudi, A., Existence and characterization of an optimal control for the problem of long waves in a shallow-water model, SIAM J. Control Optim. 39(5) (2001), 1558-1584.
  • [8] Belmiloudi, A., Robin-type boundary control problems for the nonlinear Boussinesq type equations, J. Math. Anal. Appl. 273 (2002), 428-456.
  • [9] Belmiloudi, A., Brossier, F., Regularity results for a Navier-Stokes type problem related to oceanography, Acta Appl. Math. 48 (1997), 299-316.
  • [10] Belmiloudi, A., Brossier, F., A control method for assimilation of surface data in a linearized Navier-Stokes type problem related to oceanography, SIAM J. Control Optim. 35 (1997) 2183-2197.
  • [11] Belmiloudi, A., Brossier, F., Monier, L., Mathematical and numerical modellization of large-scale oceanic waves, Math. Methods Appl. Sci. 22 (1999), 967-999.
  • [12] Brossier, F., Monier, L., Delecluse, P., Simulation of long equatorial waves in the Pacific ocean in relation with, sea level oscillations and zonal mean currents, Oceanologica Acta 17 (1994), 461-477.
  • [13] Brezis, H., Analyse Fonctionnelle, Théorie et Application, Masson, Paris, 1983.
  • [14] Dauge, M., Elliptic Boundary Value Problems on Comers Domain, Lecture Notes in Math. 1341, Springer Verlag, New York, 1988.
  • [15] Dauge, M., Problmes mixtes pour le la placien dans des domaines polydraux courbes, C. R. Acad. Sci. Paris Sér. I Math. 309(8) (1989), 553-558.
  • [16] Grisvard, P., Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics 24, Pitman, Boston, 1985.
  • [17] Lions, J. L., Contrôle Optimal de Systèmes Gouvernés par des Equations aux Dérivées Partielles, Dunod, Paris, 1968.
  • [18] Lions, J. L., Equations Différentielles Opérationnelles et Problèmes aux Limites, Springer Verlag, Berlin, 1961.
  • [19] Lions, J. L., Temam, R., Wang, S., New formulation of the primitive equations of atmosphere and application, Nonlinearity 5 (1992), 237-288.
  • [20] Lions, J. L., Temam, R., Wang, S., On the equation of the large-scale ocean, Nonlinearity 5 (1992), 1007-1053.
  • [21] Marchuk, G. L, Mathematical Models in Environmental Problems, Studies in Mathematics and its Applications 16, North-Holland Publishing, Amsterdam, 1986.
  • [22] Marchuk, G. L, Adjoint Equation and Analysis of Complex Systems, Mathematics and Its Applications 295, Kluwer Academic Publishers Group, Dordrecht, 1995.
  • [23] Philander, S. G. H., Pacanowski, R. C., The generation of equatorial currents, J. Geophys. Res. 85 (1980), 1123-1136.
  • [24] Philander, S. G. H., Pacanowski, R. C., Parameterization of vertical mixing in numerical models of tropical oceans, J. Phys. Oceanogr. 11 (1981), 1443-1451.
  • [25] Temam, T., Navier-Stokes Equations, North-Holland Publishing, Amsterdam, 1977.
  • [26] Ziane, M. Regularity results for the stationary primitive equations of the atmosphere and the ocean, Nonlinear Anal. 28(2) (1997), 289-313.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0014-0010
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.