Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Using arguments which apply equally well to the study of Brownian motion and Feynman parth integrals, the relationship between two expressions which arise in derivative asset pricing theory is examined. Detailed explanations are given for some of the key points in the theory of Henstock integrals in function spaces.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1--21
Opis fizyczny
Bibliogr. 11 poz.
Twórcy
autor
- Magee College University of Ulster Northland Road Derry BT48 7JL Northern Ireland, p.muldowney@ulster.ac.uk
Bibliografia
- [1] Elliott, R. J., Kopp, P. E., Mathematics of Financial Markets, Springer-Verlag, New York, 1999.
- [2] Henstock, R., Linear Analysis, Butterworths, London, 1968.
- [3] Henstock, R., Integration in product spaces, including Wiener and Feynman integration, Proc. London Math. Soc. 27 (1973), 317-344.
- [4] Henstock, R., The General Theory of Integration, Clarendon Press, Oxford, 1991.
- [5] Henstock, R., The construction of path integrals, Math. Japon. 39(1) (1994), 15-18.
- [6] Kwok, Y. K., Mathematical Models of Financial Derivatives, Springer, Singapore, 1998.
- [7] Muldowney, P., A General Theory of Integration in Function Spaces, Pitman Res. Notes Math. Ser. 153, Longman, Harlow, 1987.
- [8] Muldowney, P., Introduction to Feynman integration, J. Math. Study 27(1) (1994), 127-132.
- [9] Muldowney, P., Topics in probability using generalised Riemann integration, Proc. Royal Irish Acad. Sect. A 99(1) (1999), 39-50.
- [10] Muldowney, R, Feynman’s path integrals and Henstock’s non-absolute integration, J. Appl. Anal. 6(1) (2000), 1-24.
- [11] Muldowney, P., The Henstock integral and the Black-Scholes theory of derivative asset pricing, Real Anal. Exchange 26(1) (2000-2001), 117-132.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0014-0001