Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In [9], the present authors and Richard O'Malley showed that in order for a function be universally polygonally approximate it is necessary that for each ε > 0, the set of points of non-quasicontinuity be σ - (1 - ε ) symmetrically porous. The question as to whether that condition is sufficient or not was left open. Here we prove that if a set, E = U∞n=1 En, such that each Ei is closed and 1-symmetrically porous, then there is a universally polygonally approximable function, f, whose set of points of non-quasicontinuity is precisely E. Although it is tempting to call this a partial converse to our earlier theorem it might be more since it is not known if these two notions of symmetric porosity differ in the class of F? sets.
Wydawca
Czasopismo
Rocznik
Tom
Strony
175--190
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
- Department of Mathematics Washington and Lee University Lexington, Virginia 24450 U.S.A.
autor
- Department of Mathematics St. Olaf College Northfield, Minnesota 45701 U.S.A.
Bibliografia
- [1] Agronsky, S. J., Ceder, J. G., Pearson, T. L., Some characterizations of Darboux Baire 1 functions, Real Anal. Exchange 23 (1997-98), 421-429.
- [2] Bruckner, A. M., Differentiation of Real Functions, CRM Monograph Series, Vol. 5, 2nd ed., American Mathematical Society, Providence, 1994.
- [3] Ceder, J. G. and Pearson, T. L., A survey of Darboux Baire 1 functions, Real Anal. Exchange 9 (1983-84), 179-193.
- [4] Darji, U. B., Evans, M. J., Freiling, C., and O’Malley, R. J., Fine properties of Baire one functions, Fund. Math. 155 (1998), 177-188.
- [5] Denjoy, A., Leçons sur le Calcul des Coefficients d’une Série Trigonométrique, Part II, Métrique et Topologie d’Ensembles Parfaits et de Fonctions, Gauthier-Villars, Paris, 1941.
- [6] Evans, M. J., Some theorems whose a-porous exceptional sets are not a-symmetrically porous. Real Anal. Exchange 17 (1991-92), 809-814.
- [7] Evans, M. J., A note on symmetric and ordinary differentiation, Real Anal. Exchange 17 (1991-92), 820-826.
- [8] Evans, M. J. and Humke, P. D., Contrasting symmetric porosity and porosity, J. Appl. Anal. 4(1) (1998), 19-41.
- [9] Evans, M. J., Humke, P. D. and O’Malley, R. J., Universally polygonally apprommable functions, J. Appl. Anal. 6(1) (2000), 1-16.
- [10] Evans, M. J., Humke, P. D. and O’Malley, R. J., A perplexing collection of Baire one functions, Real Anal. Exchange, (to appear).
- [11] Evans, M. J., Humke, P. D. and Saxe, K., A symmetric porosity conjecture of Zajicek, Real Anal. Exchange 17 (1991-92), 258-271.
- [12] Evans, M. J., Humke, P. D. and Saxe, K., Symmetric porosity of symmetric Cantor sets, Czechoslovak Math. J. 44 (1994), 251-264.
- [13] Evans, M. J., Humke, P. D. and Saxe, K., A characterization of o-symmetrically porous symmetric Cantor sets, Proc. Amer. Math. Soc. 122 (1994), 805-810.
- [14] Evans, M. J. and O’Malley, R. J., Fine tuning the recoverability of Baire one functions, Real Anal. Exchange 21 (1995-96), 165-174.
- [15] Goffman, C., Real Functions, Holt, Reinhart, Winston, New York, 1964.
- [16] Gruber, P. M., Dimension and structure of typical compact sets, continua and curves, Monatsh. Math. 108 (1989), 149-164.
- [17] Repický, M., An example which discerns porosity and symmetric porosity, Real Anal. Exchange 17 (1991-92), 416-420.
- [18] Vallin, R. W., An introduction to shell porosity, Real Anal. Exchange 18 (1992-93), 294-320.
- [19] Zajíček, L., Sets of o-porosity and sets of a-porosity (q), Ćasopis Pëst. Mat. 101 (1976), 350-359.
- [20] Zajíček, L., Porosity and o-porosity, Real Anal. Exchange 13 (1987-88), 314-351.
- [21] Zajíček, L., On the symmetric and ordinary derivative, Atti Sem. Mat. Fis. Univ. Modena 41 (1993), 263-267.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0013-0029