PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The existence of moments of solutions to transport equations with inelastic scattering and thie applications in the asymptotic analysis

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we prove the existence of all moments of the solutions to the time-dependent spatially homogeneous transport equation describing elastic and inelastic scattering of particles. The proof uses the theory of resolvent positive operators and Desch's perturbation theorem. As an application we carry out the asymptotic analysis of the full transport equation with dominant elastic scattering and, using the results of the first part of the paper, we show that its solution can be approximated in the L1-norm by the solution of the limit equation obtained by formal asymptotic expansion.
Wydawca
Rocznik
Strony
187--211
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
  • School of Mathematical and Statistical Sciences University of Natal Durban 4041 South Africa
Bibliografia
  • [1] Abramovitz, M., Stegun, I. A., (eds.), Handbook of Mathematical Functions, Dover Publications, Inc., New York, 1965.
  • [2] Arendt, W., Resolvent positive operators, Proc. London Math. Soc. 54(3) (1987), 321-349.
  • [3] Banasiak, J., Mathematical properties of inelastic scattering models in kinetic theory, Math. Models Methods Appl. Sci. 10(2) (2000), 163-186.
  • [4] Banasiak, J., Diffusion approximation of an inelastic scattering model in linear kinetic theory, Adv. Math. Sci. Appl. 10(1) (2000), in print.
  • [5] Banasiak, J., On a diffusion-kinetic equation arising in extended kinetic theory, Math. Methods Appl. Sci. 23 (2000), in print.
  • [6] Banasiak, J., On the hydrodynamic limit of a linear kinetic equation with dominant elastic scattering, Atti Sem. Mat. Fis. Univ. Modena, accepted for publication.
  • [7] Banasiak, J., Frosali, G., Spiga, G., An interplay between elastic and inelastic scattering in models of extended kinetic theory and their hydrodynamic limts, in preparation.
  • [8] Banasiak, J., Frosali, G., Spiga, G., Asymptotic analysis for a particle transport equation with inelastic scattering in extended kinetic theory, Math. Models Methods Appl. Sci. 8(5) (1998), 851-874.
  • [9] Banasiak, J., Frosali, G., Spiga, G., Inelastic scattering models in transport theory and their small mean free path analysis, Math. Methods Appl. Sci. 23 (2000), 121— 145.
  • [10] Ben Abdallah, N., Degond, P., On hierarchy of macroscopic models for semiconductors, J. Math. Phys. 37(7) (1996), 3306-3333.
  • [11] Bobylev, A. V., Spiga, G., On a model transport equation with inelastic scattering, SIAM J. Appl. Math. 58, 1128-1137.
  • [12] Caraffini, G. L., Catalano, C.E., Spiga, G., On the small mean free path asymptotics of the transport equation with inelastic scattering, Riv. Mat. Univ. Parma (5) 1, (1998), 851-874.
  • [13] Demeio, L., Frosali, G., Diffusion approximations of kinetic equations with elastic and inelastic scattering: a comparison of different scalings, Sommari del IV Congresso Naz. Soc. Ital. di Matemática Industríale e Applicata SIMAI 98, Messina, 1-5 giugno 1998, Vol. 2, 316-319.
  • [14] Demeio, L., Frosali, G., Different scalings in the asymptotic analysis of kinetic equations with elastic and inelastic scattering, Universitá di Ancona, Dipartimento di Matemática, Rapporto N. 2 - Aprile 1999.
  • [15] Engel, K.-J., Nagel, R., One-parameter Semigroups for Linear Evolution Equations, Springer Verlag, Berlin, 1999.
  • [16] Frosali, G., Asymptotic analysis for a particle transport problem in a moving medium, IMA J. Appl. Math. 60 (1998), 167-185.
  • [17] Garibotti, C. R., Spiga, G., Boltzmann equation for inelastic scattering, J. Phys. A 27 (1994), 2709-2717.
  • [18] Majorana, A., Space homogeneous solutions of the Boltzmann equation describing electron-phonon interaction in semiconductors, Transport Theory Statist. Phys. 20(4) (1991), 261-279.
  • [19] Markowich, P. A., Schmeiser, Ch., The drift-diffusion limit for electron-phonon interaction in semiconductors, Math. Models Methods Appl. Sci. 7(5) (1997), 707-729.
  • [20] Markowich, P. A., Ringhofer, Ch. A., Schmeiser, Ch., Semiconductor Equations, Springer Verlag, Wien, 1990.
  • [21] Mika, J. R., Banasiak, J., Singularly Perturbed Evolution Equations with Applications in Kinetic Theory, World Scientific, Singapore, 1995.
  • [22] Mokhtar-Kharroubi, M., Mathematical Topics in Neutron Transport Theory: New Aspects, World Scientific, Singapore, 1997.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0013-0012
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.