Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A function F: R2→ R is called sup-measurable if Ff : R→ R given by Ff(x) = F(x,f(x)), x ∈R, is measurable for each measurable function f: R→ R. It is known that under different set theoretical assumptions, including CH, there are sup-measurable non-measurable functions, as well as their category analogues. In this paper we will show that the existence of the category analogues of sup-measurable non-measurable functions is independent of ZFC. A similar result for the original measurable case is the subject of a work in prepartion by Rosłanowski and Shelah.
Wydawca
Czasopismo
Rocznik
Tom
Strony
159--172
Opis fizyczny
Bibliogr. 13 poz.
Twórcy
autor
- Department of Mathematics West Virginia University Morgantown, WV 26506-6310 USA
autor
- Institute of Mathematics the Hebrew University of Jerusalem 91904 Jerusalem Israel
- Department of Mathematics Rutgers University New Brunswick, NJ 08854 USA
Bibliografia
- [1] Balcerzak, M., Some remarks on sup-measurablilty, Real Anal. Exchange 17 (1991— 92), 597-607.
- [2] Balcerzak, M., Ciesielski, K., On sup-measurable functions problem, Real Anal. Exchange 23 (1997-98), 787-797.
- [3] Bartoszyński, T., Judah, H., Set Theory, A K Peters, Wellesly, Massachusetts, 1995.
- [4] Ciesielski, K., Set Theory for the Working Mathematician, London Math. Soc. Stud. Texts 39, Cambridge Univ. Press, Cambridge, 1997.
- [5] Grande, E., Grande, Z., Quelques remarques sur la superposition F(x, f(x)), Fund. Math. 121 (1984), 199-211.
- [6] Grande, Z., Lipiński, J., Un example d’une fonction sup-mesurable qui n’est pas mesurable, Colloq. Math. 39 (1978), 77-79.
- [7] Kharazishvili, A.B., Some questions from the theory of invariant measures, Bull. Acad. Sci. Georgian SSR 100 (1980) (in Russian).
- [8] Kharazishvili, A.B., Sup-measurable and weakly sup-measurable mappings in the theory of ordinary differential equations, J. Appl. Anal. 3(2) (1997), 211-223.
- [9] Kharazishvili, A.B., Strange Functions in Real Analysis, Pure Appl. Math. 229, Marcel Dekker, New York - Basel, 2000.
- [10] Kunen, K., Set Theory, North-Holland, Berlin - New York, 1983.
- [11] Shelah, S., Proper Forcing, Lectures Notes in Math. 940, Springer-Verlag, Berlin - Heidelberg, 1982.
- [12] Shelah, S., Proper and Improper Forcing, Perspect. Math. Logic, Springer-Verlag, 1998.
- [13] Šragin, J. W., Conditions for measurability of superpositions, Doki. Akad. Nauk SSSR 197 (1971), 295-298 (in Russian).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0013-0010
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.