PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Oscillation criteria for a class of functional parabolic equations

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Oscillations of parabolic equations with functional arguments are studied, and sufficient conditions are derived for all solutions of certain boundary value problems to be oscillatory in a cylindrical domain. Our approach is to reduce the multidimensional problems to one-dimensional problems for functional differential inequalities.
Wydawca
Rocznik
Strony
1--16
Opis fizyczny
Bibliogr. 10 poz.
Twórcy
autor
  • Department of Applied Mathematics Faculty of Science Fukuoka University Fukuoka 814-0180 Japan
autor
  • Department of Mathematics Faculty of Science Toyama University Toyama 930-8555 Japan
Bibliografia
  • [1] Bainov, D.D. and Minchev, E.I., Forced oscillations of solutions of impulsive nonlinear parabolic equations, J. Appl. Anal, (to appear).
  • [2] Bykov, Ya.V. and Kultaev, T.Ch., Oscillation of solutions of a class of parabolic equations, Izv. Akad. Nauk Kirgiz. SSR 6 (1983), 3-9 (Russian).
  • [3] Courant, R. and Hilbert, D., Methods of Mathematical Physics, Vol. I, Interscience, New York, 1966.
  • [4] Cui, B.T., Oscillation theorems of nonlinear parabolic equations of neutral type, Math. J. Toyama Univ. 14 (1991), 113-123.
  • [5] Mishev, D.P., Oscillation of the solutions of hyperbolic differential equations of neutral type with “maxima”, Godishnik Vissh. Uchebn. Zaved. Prilozhna Mat. 25 (1989), 9-18.
  • [6] Mishev, D.P. and Bainov, D.D., Oscillation of the solutions of parabolic differential equations of neutral type, Appl. Math. Comput. 28 (1988),
  • [7] Okikiolu, G.O., Aspects of the Theory of Bounded Integral Operators in Lp- spaces, Academic Press, New York, 1971.
  • [8] Tanaka, S. and Yoshida, N., Oscillations of solutions to parabolic equations with deviating arguments, Tamkang J. Math. 28 (1997), 169-181.
  • [9] Yoshida, N., On the oscillation of solutions to parabolic equations with functional arguments, Math. J. Toyama Univ. 18 (1995), 65-78.
  • [10] Yoshida, N., Forced oscillations of nonlinear parabolic equations with functional arguments, Analysis 15 (1995), 71-84.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0012-0026
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.