PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nanokompozytowe włókna alginianowe i kompozyty z ich udziałem do zastosowań w inżynierii biomateriałowej

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
PL
Wykorzystanie nanotechnologii w wytwarzaniu włókien alginianowych umożliwiło nadanie im unikatowych właściwości osteokonduktywnych i osteoin-duktywnych wynikających z rodzaju ceramicznego nanododatku wprowadzonego do tworzywa. Włókna te są przeznaczone do wytwarzania biokompozytow z udziałem trudniej resorbowalnego polimeru poli-ε-kaprolaktonu (PCL). Zgodnie z podanym w pracy modelem kompozytu polimerowo-włóknistym obecność w nim łatwiej resorbowalnego składnika włóknistego będzie powodować wytworzenie w materiale implantacyjnym systemu porów ułatwiającego proliferację komórek. Wynikiem realizacji pracy w dwóch obszarach tematycznych, dotyczących wytwarzania włókien nanokompozytowych oraz biokompozytow z ich udziałem, było opracowanie warunków wytwarzania włókien z alginianu wapniowego zawierających nanododatki HAp, TCP, SiO2, bioszkło i MMT. Określono ich strukturę nadmolekularną, porowatość, właściwości sorpcyjne i wytrzymałościowe. Wytworzone na bazie tych włókien biokompozyty oceniano pod kątem ich właściwości mechanicznych, fizykochemicznych oraz stymulującego działania na procesy wzrostu komórkowego. W oparciu o przeprowadzoną analizę w układzie: charakterystyka polimeru, charakterystyka stosowanych nanododatków, właściwości reologiczne roztworów przędzalniczych, warunki procesu formowania włókien, struktura i właściwości włókien alginianowych, sprecyzowano ogólną zasadę wytwarzania nanokompozytowych włókien z alginianu wapniowego przeznaczonych do otrzymywania kompozytów polimerowo-włóknistych. Stwierdzono, iż dla uzyskanych nanokompozytowych włókien z alginianu wapnia zawierających ceramiczne nanododatki o zdefiniowanej budowie chemicznej (z wyjątkiem bioszkła) korzystne ze względu na uzyskiwanie wytrzymałości właściwej na poziomie 22-24 cN/tex jest realizowanie procesu formowania przy dodatniej wartości wyciągu filierowego +70% i maksymalnej możliwej do uzyskania dla danego typu włókien deformacji w etapie rozciągu. Udowodniono przyjętą w pracy hipotezę, iż o właściwościach nanokompozytowych włókien z alginianu wapnia decyduje nie tylko wielkość rozciągu całkowitego, ale także deformacja jeszcze płynnej strugi oraz wartość naprężeń, pod wpływem których realizowane są procesy deformacyjne (zestalanie i rozciąganie) w poszczególnych etapach wytwarzania. Podstawę do udowodnienia przyjętej hipotezy stanowiły analizy porównawcze wpływu wyciągu filierowego i deformacji w etapie rozciągu na strukturę i właściwości włókien alginianowych zawierających różnego rodzaju nanododatki ceramiczne. Przeprowadzone badania pozwoliły na sformułowanie prawdopodobnego mechanizmu procesu zestalania i opis procesu rozciągu nanokompozytowych włókien alginianowych. O przebiegu zestalania włókien alginianowych decydują szybkości i wzajemna relacja trzech procesów: dyfuzji jonowej, żelowania i rozdziału fazowego. Na ich przebieg i kształtowanie się struktury w tym etapie wpływa fakt, iż zachodzą one w polu naprężeń związanych z występowaniem podłużnego gradientu prędkości, uzależnionego od wartości wyciągu filierowego i związanego z siłą odbioru włókna. W drugim obszarze tematycznym, dotyczącym wytwarzania biokompozytów, udowodniono hipotezę polegającą na założeniu, iż uzyskane kompozyty polimerowo-włókniste wykazują cechy kompozytu wielofunkcyjnego, o dobrych właściwościach mechanicznych. Wykazano, iż kompozyty polimerowo-włókniste wytworzone na bazie poli-s-kaprolaktonu oraz nanokompozytowych włókien z alginianu wapnia stanowią interesujący biomateriał, ze względu na możliwość projektowania cech materiałowych w zależności od udziału wagowego fazy włóknistej oraz od charakteru zastosowanego nanododatku. W ramach tego obszaru zostało sprawdzone stymulujące działanie nanododatków (obecnych w tworzywie włókien alginianowych) na proces wzrostu komórkowego, z zastosowaniem linii komórkowej osteoblastów. Jednocześnie przeprowadzone badania poziomu interleukin (IL6, IŁ l O, THN-α), będących markerami stanu zapalnego, wykazały spadek wydzielania tych interleukin już w siódmym dniu inkubacji.
EN
The use of nanotechnology in the production of alginate fibres has made it possible to give them unique osteoconductive and osteoinductive properties, which depend on the type of ceramic nanoadditive introduced into the material. These fibres are used for the production of biocomposites together with a less easily re-sorbable polymer, poly-ε-caprolactone (PCL). According to the polymer-fibrous composite model described in the paper, the presence in it of the more easily resorbable fibrous components will cause a system of pores to form in the implant material, facilitating the proliferation of cells. As a result of work in two subject areas relating to the production of nano-composite fibres and of biocomposites containing them, conditions were worked out for the production of fibres from calcium alginate, containing the nanoaddi-tives HAp, TCP, SiO2, bioglass and MMT. A determination was made of their supramolecular structure, porosity, sorption properties and strength. The biocomposites made from these fibres were evaluated in terms of their mechanical and physicochemical properties and their stimulating effect on cell growth processes. Based on analysis of the properties of the polymer and of the nanoadditives used, rheological properties of the spinning solutions, conditions of the fibre forming process and the structure and properties of alginate fibres, a general rule was developed concerning the production of nanocomposite calcium alginate fibres intended for making polymer-fibrous composites. It was found that, for the obtained nanocomposite calcium alginate fibres containing ceramic nanoadditives with defined chemical structure (with the exception of bioglass), it is advantageous, with regard to the achievement of a tenacity of 22-24 cN/tex, to carry out the forming process with a positive value of pull-out at the as-spun draw ratio of +70% and with the maximum deformation achievable for the fibres in question at the drawing stage. The hypothesis adopted in the work has been proved: that the properties of nanocomposite calcium alginate fibres are determined not only by the total deformation, but also by the deformation of the still liquid stream and the value of the stresses under which the deformation processes (solidification and drawing) take place at the various stages of fibre production. The basis for proof of the hypothesis is provided by comparative analyses of the effect of pull-out at the as-spun draw ratio and deformation at the drawing stage on the structure and properties of alginate fibres containing different types of ceramic nanoadditive. The tests carried out have made it possible to formulate a probable mechanism for the solidification process and to describe the process of drawing of nanocomposite alginate fibres. The progress of the solidification of alginate fibres depends on the speed and mutual relations of three processes: ion diffusion, gel formation and phase separation. Their course, and the formation of the structure at this stage, are affected by the fact that they take place within the field of stresses resulting from the presence of a lengthwise velocity gradient, which is dependent on the value of pull-out at the as-spun draw ratio and related to the force with which the fibre is collected. In the second subject area, relating to the production of biocomposites, a hypothesis was proved involving the assumption that the obtained polymer-fibrous composites display features of a multifunctional composite, with good mechanical properties. It was shown that polymer-fibrous composites based on poly-ε-caprolactone and nanocomposite fibres made from calcium alginate constitute an interesting biomaterial, due to the possibility of designing material properties depending on the content by mass of the fibrous phase and on the nature of the na-noadditive used. In this subject area, tests were made of the stimulating action of nanoadditives (present in the material of the alginate fibres) on the process of cell growth, using a cell line of osteoblasts. Simultaneously conducted tests of the level of interleukins (IL6, IL10, THN-α), being markers of inflammation, showed a fall in the secretion of those interleukins as early as the seventh day of incubation.
Rocznik
Tom
Strony
3--210
Opis fizyczny
Bibliogr. 230 poz.
Twórcy
autor
Bibliografia
  • 1. Haug A., Smidsrød O., Fractionation of alginates by precipitation with calcium an magnesium ions, Acta Chem. Scand. 19, (1965), 1221-1226.
  • 2. Haug A., Larsen B., Smidsrød O., Studies on the sequence of uronic acid residues in: alginic acid, Acta Chem. Scand. 21, (1967), 691-704.
  • 3. Larsen B., Smidsrød O., Painter T.J., Haug A., Calculation of the nearest-neighbour frequencies in fragments of alginate from the yields of free monomers after partial hydrolysis, Acta Chem. Scand. 24, (1970), 726-728.
  • 4. Painter T.J., Smidsrød O., Haug A., A computer study of the changes in composition distribution occurring during random depolymerisation of binary linear heteropolysaccharide, Acta Chem. Scand. 22, (1968), 1637-1648.
  • 5. Smidsrod O, Whittington S.G., Monte Carlo investigation of chemical inhomogeneity in copolymers, Macro molecules 2, (1969), 42-44.
  • 6. Skjåk-Bræk G., Larsen B., Grasdalen H., Monomer sequence and acetylation pattern in some bacterial alginates, Carbohydr. Res. 154, (1986), 239-250.
  • 7. Grant G.T., Morris E.R., Rees D.A., Smith P.J.C., Thorn D., Biological interactions between polysacharides and divalent cations: The egg-box model, FEBS Lett. 32, (1973), 195-198.
  • 8. Martinsen A., Skjåk-Bræk G., Smidsrød O., Zanetti F., Paoletti S., Comparison of different methods for determination of molecular weight and molecular weight distribution of alginates, Carbohydr. Polym. 15, (1991), 171-193.
  • 9. Mackie W., Noy R., Sellen D.B., Solution properties of sodium alginate, Biopolymers 19, (1980), 1839-1860.
  • 10. Moe S., Draget K., Skjåk-Bræk G., Smidsrod O., Alginates, in: Food Polysaccharides and Their Applications (Stephen, A.M.Ed.), New York: Marcel Dekker 1995.
  • 11. Grasdalen H., Larsen B., Smidsrød O., 13C-NMR studies of alginate, Carbohydr. Res. 56, (1977), C11-C15.
  • 12. Grasdalen H., Larsen B., Smidsrød O., A PMR study of the composition and sequence of uronate residues in alginate, Carbohydr. Res. 68, (1979), 23-31.
  • 13. Grasdalen H., High-field 1H-NMR spectroscopy of alginate: Sequential structure and linkage conformations Carbohydr. Res. 118, (1983), 255-260.
  • 14. Barikosky M., Dressing product with a calcium alginate matrix and method of production of the same, US Patent 5,981,821 (1999).
  • 15. Fenton J.C., Keys A.F., Mahoney P.M.J., Alginate fabric, its use in wound dressing and surgical hemostats and a process for its manufacture, US Patent 5,714,955 (1998).
  • 16. Griffiths B., Mahoney P.M.J., Sustained release alginate fibre and process for the preparation thereof, US Patent 5,690,955 (1997).
  • 17. Mahoney P.M.J., Walker K., Alginate fibres, manufacture and use, US Patent 5,874,100(1999).
  • 18. Hosler J.A., Wound dressing and manufacture thereof, US Patent 6,153,214 (2000).
  • 19. Qin Y., Gilding D.K., Fibres of cospun alginates, US Patent 6,080,420 (2000).
  • 20. Qurrat-ul-Ain, Sharma S., Khuller G.K., Garg S.K., Alginate-based oral drug delivery system for tuberculosis: pharmacokinetics and therapeutic effects, J. Antimicro. Chemother. 51, (2003), 931-938.
  • 21. Ciofani G., Raffa V., Pizzorusso T., Menciassi A., Dario P., Characterization of an alginate-based drug delivery system for neurological applications, Med. Eng.&Phys. 30, (2008), 848-855.
  • 22. Ciofani G., Raffa V., Menciassi A., Dario P., Alginate and chitosan particles as drug delivery system for cell therapy, Biomed. Microdevices 10, (2007), 131-140.
  • 23. Tønnesen H.H., Karlsen J., Alginate in Drug Delivery Systems, Drug Dev. Ind. Pharm. 28, (2002), 621-630.
  • 24. Polyak B., Geresh S., Marks R.S., Synthesis and Characterization of a Biotin-Alginate Conjugate and Its Application in Biosensor Construction, Biomacromolecules 5, (2004), 389-396.
  • 25. Abu-Rabeah K., Polyak B., lonescu R.E., Cosnier S., Marks R.S., Synthesis and Characterization of a Pyrrole-Alginate Conjugate and Its Application in a Biosensor Construction, Biomacromolecules 6, (2005), 3313-3318.
  • 26. Hench L.L; Jones J.R., Biomaterials, artificial organs and tissue engineering, Woodhead Publishing Limited, Cambridge (2005).
  • 27. Hashimoto T., Suzuki Y., Tanihara M., Kakimaru Y., Suzuki K., Development of alginate wound dressings linked with hybrid peptides derived from laminin and elastin, Biomaterials 25, (2004), 1407-1414.
  • 28. Bouhadir K.H., Lee K.Y., Alsberg E., Damm K.L., Anderson K.W, Mooney D.J., Degradation of Partially Oxidized Alginate and Its Potential Application for Tissue Engineering, J. Biotechnol. Prog. 17, (2001), 945-950.
  • 29. Mierisch C.M., Cohen S.B., Jordan L.C., Robertson P.G., Balian G., Diduch D.R., Transforming growth factor-ß in calcium alginate beads for the treatment of articular cartilage defects in the rabbit, J. Arthrosc. Relat. Surg. 18, (2002), 892-900.
  • 30. Alsberg E., Anderson K.W., Albeiruti A., Franceschi R.T., Mooney D.J., Cell-interactive Alginate Hydrogels for Bone Tissue Engineering, J. Dent. Res. 80, (2001), 2025-2029.
  • 31. Chung T.W., Yang J., Akaike T., Cho K.Y., Nah J.W., Kim S.II, Cho Ch.S., Preparation of alginate/galactosylated chitosan scaffold for hepatocyte attachment, Biomaterials 23, (2002), 2827-2834.
  • 32. Dar A, Shachar M, Leor J, Cohen S., Cardiac tissue engineering Optimization of cardiac cell seeding and distribution in 3D porous alginate scaffolds, Biotechnol. Bioeng. 80, (2002), 305-312.
  • 33. Ratner B.D., Hoffman A.S., Schoen F.J., Lemons J.E. Biomaterials Science: An Introduction to Materials in Medicine 2nd Edition, Elsevier Academic Press, Amsterdam (2004).
  • 34. http://www.ethicon360.com/products/surgicel-family-absorbable-hemostats (23.11.09).
  • 35. Müller F.A., Müller L., Hofmann I., Wenzel M.M., Staudenmaier R., Cellulose-based scaffold materials for cartilage tissue engineering, Biomaterials 27, (2006), 3955-3963.
  • 36. Entcheva E., Bie H., Yin L., Chung C.-Y., Farrell M., Kostov Y., Functional cardiac cell constructs on cellulose-based scaffolding, Biomaterials 25, (2004), 5753-5762.
  • 37. Kim H.J., Kim U.-J., Kim H.S., Li Ch., Wada M., Leisk G.G., Kaplan D.L., Bone tissue engineering with premineralized silk scaffolds, Bone 42, (2008), 1226-1234.
  • 38. Liu H., Fan H., Wong E.J.W., Toh S.L., Goh J.C.H., Silk-Based Scaffold for Ligament Tissue Engineering, IFMBE Proceedings, 14th Nordic-Baltic Conference on Biomedical Engineering and Medical Physics, Ryga (Łotwa) 16-20 June 2008, 34-37.
  • 39. Meinel L., Hofmann S., Karageorgiou V., Zichner L., Langer R., Kaplan D., Vunjak-Novakovic G., Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffolds, Biotechnol. Bioeng. 88, (2004), 379-391.
  • 40. Li Ch., Vepari Ch., Jin H.-J., Kim H.J., Kaplan D.L., Electrospun silk-BMP-2 scaffolds for bone tissue engineering, Biomaterials 27, (2006), 3115-3124.
  • 41. Zeugolis D.I., Paul R.G., Attenburrow G., Extruded Collagen Fibres for Tissue Engineering Applications: Influence of Collagen Concentration and NaCl Amount J. Biomat. Sci., Polym. Edit. 20, (2009), 219-234.
  • 42. Gentleman E., Lay A.N., Dickerson D.A., Nauman E.A., Livesay G.A., Dee K.C. Mechanical characterization of collagen fibers and scaffolds for tissue engineering Biomaterials 24, (2003), 3805-3813.
  • 43. Buttafoco L., Kolkman N.G., Engbers-Buijtenhuijs P., Pool A.A., Dijkstra P.J., Vermes I., Feijen J., Electrospinning of collagen and elastin for tissue engineering applications, Biomaterials 27, (2006), 724-734.
  • 44. Järvinen T.A.H., Järvinen T.L.N., Kannus P., Józsa L., Järvinen M., Collagen fibres of the spontaneously ruptured human tendons display decreased thickness and crimp angle, J. Orthop. Res. 22, (2004), 1303-1309.
  • 45. Zeugolis D.I., Paul R.G., Attenburrow G., The influence of a natural cross-linking agent (Myrica rubra) on the properties of extruded collagen fibres for tissue engineering applications, Mat. Sci. Engin. C 30, (2010), 190-195.
  • 46. Zeugolis D.I., Paul R.G., Attenburrow G., Post-self-assembly experimentation on extruded collagen fibres for tissue engineering applications, Acta Biomaterialia 4, (2008), 1646-1656.
  • 47. Boucard N., Viton Ch., Agay D., Mari E., Roger T., Chancerelle Y., Domard A., The use of physical hydrogels of chitosan for skin regeneration following third-degree burns, Biomaterials 28, (2007), 3478-3488.
  • 48. Paul W., Sharma Ch. P., Chitosan and Alginate Wound Dressings: A Short Review, Trends Biomater. Artif. Organs 18, (2004), 18-23.
  • 49. Aoyagi S., Onishi H., Machida Y., Novel chitosan wound dressing loaded with minocycline for the treatment of severe burn wounds, Int. J. Pharm. 330, (2007), 138-145.
  • 50. Krucińska L, Szosland L., Cisło R., Błasińska A., Komisarczyk A., Chilarski A., Bilska J., Pilas B., A wound dressing material of dibutyrylchityn and chityn reconstituted therefrom, EU Patent WO/2005/099781.
  • 51. Błasińska A., Krucińska L, Chrzanowski M., Dibutyrylchityn Nonwoven Biomaterials Manufactured Using Electrospinning Method, Fibres Text. East. Eur. 12(4); (2004), 51-55.
  • 52. Kurtz S.M., The UHMWPE Handbook, Academic Press, New York, (2004).
  • 53. Ramakrishna S., Mayer J., Wintermantel E., Leong K.W., Biomedical applications of polymer-composite materials: a review, Compos. Sci. Technol. 61, (2001), 1189-1224.
  • 54. http://www.dsm.com/en_US/html/hpf/medicaLdevices.htm (01.12.2009).
  • 55. http://www.surgicalmesh.com/pp_mesh.htm (01.12.2009).
  • 56. Struszczyk M.H., Innowacyjne siatki chirurgiczne do zaopatrywania ubytków tkanki łącznej, Zeszyty Naukowe Politechniki Łódzkiej nr 1005, Łódź, (2007).
  • 57. http://www.ids-plastics.com/ plastics/europe/lenzing_plastics/ptfe /58_0/s_supplier_3.html (01.12.2009).
  • 58. Walton R.L., Brown R.E., Tissue engineering of biomaterials for composite reconstruction: an experimental model, Ann. Plast. Surg. 30, (1993), 105-110.
  • 59. Guidoin R., Maurel S., Chafke N., Thien H., Ze Z., Themen M., Formichi M., Gosselin C., Expanded polytetrafluoroethylene arterial prostheses in humans: chemical analysis of 79 specimens, Biomaterials 14, (1993), 694-704.
  • 60. Gumpenberger T., Heitz J., Bäuerle D., Kahr H., Graz I., Romanin C., Svorcik V., Leisch F., Adhesion and proliferation of human endothelial cells on photochemically modified polytetrafluoroethylene, Biomaterials 24, (2003), 5139-5144.
  • 61. Chiesa R., Marone E.M., Tshomba Y., Logaldo D., Castellano R., Melissano G., Aortobifemoral Bypass Grafting Using Expanded Polytetrafluoroethylene Stretch Grafts in Patients with Occlusive Atherosclerotic Disease, Ann. Vase. Surg. 23, (2009),764-769.
  • 62. Wong, R.K., Wichterman, L., Parson, S.D., Skin sparing nipple reconstruction with polytetrafluoroethylene implant, Ann. Plast. Surg. 61, (2008), 256-258.
  • 63. van Det R.J., Vriens B.H.R., van der Palen J., Geelkerken R.H., Dacron or ePTFE for Femoro-popiteal Above-Knee Bypass Grafting: Short-and Long-term Results of a Multicentre Randomised Trial, Eur. J. Vase. Endovasc. 37, (2009), 457-463.
  • 64. Zannis K., Deux J.-F., Tzvetkov B., Nakashima K., Loisance D., Rahmouni A., Kirsch M.E.W., Composite Freestyle Stentless Xenograft with Dacron Graft Extension for Ascending Aortic Replacement, Ann. Thorac. Surg. 87, (2009), 1789-1794.
  • 65. Phaneuf M.D., Dempsey D.J., Bide M.J., Quist W.C., LoGerfo F.W., Coating of Dacron vascular grafts with an ionic polyurethane: a novel sealant with protein binding properties, Biomaterials 22, (2001), 463-469.
  • 66. Pamuła E., Biomateriały dla inżynierii tkankowej. Badania nad kształtowaniem struktury i właściwości biologicznych poliestrów alifatycznych, Prace monograficzne AGH Kraków, Wydział Inżynierii Materiałowej i Ceramiki, Kraków, vol. 1 (2008).
  • 67. Epple M., Herzberg O., Porous polyglycolide, J. Biomed. Mater. Res.-B, 43, (1998), 83-88.
  • 68. Zhao G., Yin S., Liu G., Cen L., Sun J., Zhou H., Liu W., Cui L., Cao Y., In vitro engineering of fibrocartilage using CDMP1 induced dermal fibroblasts and polyglycolide, Biomaterials 30, (2009), 3241-3250.
  • 69. Ashammakhi N., Mäkelä E.A., Törmälä P., Waris T., Rokkanen P., Effect of self-reinforced polyglycolide membrane on osteogenesis: an experimental study in rats, Plast. Surg. 23, (2000), 423-428.
  • 70. Shikinami Y., Matsusue Y., Nakamura T., The complete process of bioresorption and bone replacement using devices made of forged composites of raw hydroxyapatite particles/poly 1-lactide (F-u-HA/PLLA), Biomaterials 26, (2005), 5542-5551.
  • 71. He L., Liao S., Quan D., Ngiam M., Chan C.K., Ramakrishna, S., Lu, J., The influence of laminin-derived peptides conjugated to Lys-capped PLLA on neonatal mouse cerebellum C17.2 stem cells, Biomaterials, 30, (2009), 1578-1586.
  • 72. Fan J., Tang Ch.-Y., Tsui C.P., Computationon flexural properties of HA/PLLA composite using a cell model approach, Acta Mech. Solid Sin. 19, (2006), 18-25.
  • 73. Sato T., Chen G., Ushida T., Ishii T., Ochiai N., Teteishi T., Tanaka J., Evaluation of PLLA-collagen hybrid sponge as a scaffold for cartilage tissue engineering, Mater. Sci. Engin. 24, (2004), 365-372.
  • 74. Keskin D.S., Tezcaner A., Korkusuz P., Korkusuz F., Hasirci V., Collagen-chondrotin sulfate-based PLLA-SAIB-coated rhBMP-2 delivery system for bone repair, Biomaterials 26, (2005), 4023-4034.
  • 75. Williams J.M., Adewunmi A., Schek R.M., Flanagan C.L., Krebsbach P.H., Feinberg P.H., Hollister S.J., Das S., Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering, Biomaterials 26, (2005), 4817-4827.
  • 76. Kweon H., Yoo M.K., Park I.K., Kim T.H, Lee H.Ch., Lee H.-S., Oh J.-S., Akaike T., Cho Ch.-S., A novel degradable polycaprolactone networks for tissue engineering, Biomaterials 24, (2003), 801-808.
  • 77. Yang Q., Chen L., Shen X., Tan Z., Preparation of Polycaprolactone Tissue Engineering Scaffolds by Improved Solvent Casting/Particulate Leaching Method, J. Macromol. Sci.-B45, (2006), 1171-1181.
  • 78. Kim H.-W., Knowles J.C., Kim H.-E., Hydroxyapatite/poly(ε-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery, Biomaterials 25, (2004), 1279-1287.
  • 79. Low S.W., Ng Y.J., Yeo T.T., Chou N., Use of Osteoplug(tm) polycaprolactone implants as novel burr-hole covers, Singapore Med. J. 50, (2009), 777-780.
  • 80. Coombes A.G.A., Rizzi S.C., Williamson M., Barralet J.E., Downes S., Wallace W.A., Precipitation casting of polycaprolactone for applications in tissue engineering and drug delivery, Biomaterials 25, (2004), 315-325.
  • 81. van Sterkenburg S.M.M., de la Riviere A.B., Vermeulen F.E.E., Sternal fixation with reorbable suture material, Eur. J. Cardio-Thorac. 4, (1990), 345.
  • 82. Piotrowski W.P., Mayer-Zuchi U., The use of polyglactin 910-polydioxanon in the treatment of defects of the orbital roof, J. Oral Maxil. Surg. 57, (1999), 1301-1305.
  • 83. Jank S., Emshoff R., Schuchter B., Strobl H., Brandlmeier I., Norer B., Orbital floor reconstruction with flexible Etisorb patches, Oral Surg. Oral Med. Oral Pathol. Radiol. Endod. 95, (2003), 16-22.
  • 84. Bruin P., Venstra G.J., Nijenhuis A.J., Pennings A.J., Design and synthesis of biodegradable poly(ester urethane) elastomer networks composed of non-toxic building blocks, Makromol. Chem. Rapid. Commun. 9, (1988), 589-594.
  • 85. Bruin P., Smedinga J., Pennings A.J., Jonkman M.F., Biodegradable lysine diisocy-anate-based poly(glycolide-co- ε -caprolactone)-urethane network in artificial skin, Biomaterials 11, (1990), 191-295.
  • 86. Spaans C.J., Belgraver V.W., Rienstra O., De Groot J.H., Veth R.P.H., Pennings A.J., Solvent-free fabrication of micro-porous polyurethane amide and polyurethane-urea scaffolds for repair and replacement of the knee-joint meniscus, Biomaterials 21, (2000), 2453-2460.
  • 87. Li B., Yoshii T., Hafeman A.E., Nyman J.S., Wenke J.C., Guelcher S.A., The effects of rhBMP-2 released from biodegradable polyurethane/microsphere composite scaffolds on new bone formation in rat femora, Biomaterials 30, (2009), 6768-6779.
  • 88. Li B., Davidson J.M., Guelcher S.A., The effect of the local delivery of platelet-derived growth factor from reactive two-component polyurethane scaffolds on the healing in rat skin excisional wounds, Biomaterials 30, (2009), 3486-3494.
  • 89. Leong K.H., Ramakrishna S., Huang Z.M., Bibo G.A., The potential of knitting for engineering composites - a review, Composites-A 31, (2000), 197-220.
  • 90. Błażewicz S., Stoch L., Biomateriały Tom 4, Akademicka Oficyna Wydawnicza EXIT, Warszawa, (2003).
  • 91. Campbell A.C., Rae P.S., Anterior cruciate reconstruction with the ABC carbon and polyester prosthetic ligament, Ann. R. Coll. Surg. Engl. 77, (1995), 349-350.
  • 92. Jenkins D.H., McKibbin B., The role of flexible carbon-fibre implants as tendon and ligament substitutes in clinical practice. A preliminary report, J. Bone Joint Surg. Br. 62, (1980), 497-499.
  • 93. Błażewicz S., Chłopek J., Litak A., Wajler C., Experimental study of mechanical properties of composite carbon screws Biomaterials 18, (1997), 437-439.
  • 94. Błażewicz S., Wajler C, Chłopek J., Static and dynamic fatigue properties of carbon ligament prosthesis J Biomed Mater Res 32, (1996), 215-219.
  • 95. Stodolak E., Badania nad modyfikacją. powierzchniową i wpływem włókien na materiał polimerowy i odpowiedź komórkową, Praca doktorska Akademia Górniczo-Hutnicza w Krakowie, Kraków, (2006).
  • 96. Langer R., Vacanti J.P., Tissue engineering, Science 260, (1993), 920-926.
  • 97. Olszewska-Słonina D.M., Drewa T.A., Hodowla komórek, inżynieria tkankowa i medycyna regeneracyjna. Część I, Wiadomości Lekarskie LIX, (2006), 585-589.
  • 98. Sipe J.D., Tissue engineering and reparative medicine, Ann. N.Y. Acad. Sci. 961, (2002), 1-9.
  • 99. Langer R., Vacanti J.P., Artificial organs, Sci. Am. 273, (1995), 130-133.
  • 100. Terada S., Sato M., Sevy A., Vacanti J.P., Tissue engineering in the twenty-first century, Yonsei Med. J. 41, (2000), 685-689.
  • 101. Olszewska-Słonina D.M., Drewa T.A., Styczyński J., Czajkowski R., Hodowla komórek, inżynieria tkankowa i medycyna regeneracyjna. Część II, Wiadomości Lekarskie LIX, (2006), 732-737.
  • 102. Aebicher P., Schluep M., Deglon N., Joseph J.M., Hirl L., Heyd B., Goddard M., Hammang J.P., Zurn A.D., Kato A.C., Regli F., Baetge E.E., Intrathecal delivery of CNTF using encapsulated genetically modified xenogeneic cells in amyotrophic lateral sclerosis patients, Nat. Med. 2, (1996), 696-699.
  • 103. Zurn A.D., Henry H., Schluep M., Auberl V., Winkel L., Eilers B., Bachmann C., Aebischer P., Evaluation of an intrathecal immune response in amyotrophic lateral sclerosis patients implanted with encapsulated genetically engineered xenogeneic cells, Cell. Transplant 9, (2000), 471-484.
  • 104. Thorsen F., Read T.A., Lund-Johansen M., Tysnes B.B., Bjerkvig R., Alginate-encapsulated producer cells: a potential new approach for the treatment of malignant brain tumors, Cell. Transplant 9, (2000), 773-783.
  • 105. Read T.A., Sorensen D.R., Mahesparan R., Enger P.O., Timpl R., Olsen B.R., Hjelstuen M.H., Haraldselh O., Bjerkvig R., Local endostatin treatment of gliomas administered by microencapsulated producer cells, Nat. Biotechnol. 19, (2001), 29-34.
  • 106. Zieske J.D., Mason V.S., Wasson M.E., Meunier S.F., Nolte C.J., Fukai N., Olsen B.R., Parenteau N.L., Basement membrane assembly and differentiation of cultured corneal cells: importance of culture environment and endothelial cell interaction, Exp. Cell Res. 214, (1994), 621-633.
  • 107. Germain L., Auger F.A., Grandbois E., Guignard R., Giasson M., Boisjoly H., Guerin S.L., Reconstructed human cornea produced in vitro by tissue engineering, Pathobiology 67, (1999), 140-147.
  • 108. Griffth M., Hakim M., Shimmura S., Watsky M.A., Li F., Carlsson D., Doillon C.J., Nakamura M., Suuronen E., Shinozaki N., Nakata K., Sheardown H., Artificial human corneas: scaffolds for transplantation and host regeneration, Cornea 21, (2002), S54-S61.
  • 109. Chirila T.V., An overview of the development of artificial corneas with porous skirts and the use of PHEMA for such an application, Biomaterials 22, (2001), 3311-3317.
  • 110. Crawford G.J., Hicks C.R., Lou X., Vijayasekaran S., Tan D., Mulholland B., Chirila T.V., Constable I.J., The Chirila Keratoprosthesis: phase I human clinical trial, Opthalmology 109, (2002), 883-889.
  • 111. Sheridan R.L., Tompkins R.G., Burke J.F., Management of burn wounds with prompt excision and immediate closure, J. Intensive Care Med. 9, (1994), 6-17.
  • 112. Bell E., Parenteau N., Gay R., Nolte C., Kemp P., Bilbo B., Ekstein B., Johnson E., The living skin equivalent: its manufacture, its organotypic properties and its responses to irritants, Toxic. Vitro 5, (1991), 591-596.
  • 113. Bell E., Rosenberg M., Kemp P., Gay R., Green G.D., Muthukumaran N., Nolte C., Recipes for reconstituting skin, J. Biomech. Eng. 113, (1991), 113-119.
  • 114. Eaglstein W.H., Alvarez O.M., Auletta M., Leffel D., Rogers G.S., Zitelli J.A., Norris J.E., Thomas I., Irondo M., Fewkes J., Hardin-Young J., Duff R.G., Sabolinski M.L., Acute excisional wounds treated with a tissue-engineered skin (Apligraf), Dermatol. Surg. 25, (1999), 195-201.
  • 115. Chen S.C., Mullon C, Kahaku E., Watanabe F., Hewitt W., Eguchi S., Middleton Y., Arkadopoulos N., Rozga J., Solomon B., Demetriou A.A., Treatment of severe liver failure with a bioartificial liver, Ann. N. Y. Acad. Sci. 831, (1997), 350-360.
  • 116. Mazariegos G.V., Kramer D.J., Lopez R.C., Shakil A.O., Rosenbloom A.J., DeVera M., Giraldo M., Grogan T.A., Zhu Y., Fulmer M.L., Amiot B.P., Patzer J.F., Safety observations in phase I clinical evaluation of the Excorp Medical Bioartificial Liver Support System after the first four patients, ASAIO J. 47, (2001), 471-475.
  • 117. Patzer J.F., Advances in bioartificial liver assist devices, Ann. N. Y. Acad. Sci. 944, (2001), 320-333.
  • 118. Kin T., Iwata H., Aomatsu Y., Ohyama T., Kanehiro H., Hisanaga M., Nakajima Y., Xenotransplantation of pig islets in diabetic dogs with use of a microcapsule composed of agarose and polystyrene sulfonic acid mixed gel, Pancreas 25, (2002), 94-100.
  • 119. Lanza R.P., Ecker D.M., Kuhtreiber W.M., Marsh J.P., Ringeling J., Chick W.L., Transplantation of islets using microencapsulation: stidies in diabetic rodents and dogs, J. Mol. Med. 77, (1999), 206-210.
  • 120. Griffth L.G., Naughton G., Tissue Engineering-Current Challenges and Expanding Opportunites, Science 295, (2002), 1009-1014.
  • 121. Naumann A., Rotter N., Bujia J., Aigner J., Tissue engineering of autologous cartilage transplants for rhinology, Am. J. Rhinol. 12, (1998), 59-63.
  • 122. Freed L.E., Langer R., Martin I., Pellis N.R., Vunjak-Novakovic G., Tissue engineering of cartilage in space, Proc. Natl. Acad. Sci. USA 94, (1997), 13885-13890.
  • 123. Kadiyala S., Jaiswal N., Bruder S.P., Culture expanded, bone marrow derived mesenchymal stem cells can regenerate a critical-sized segmental bone defect, Tissue Eng. 3, (1997), 173-185.
  • 124. Petite H., Viateau V., Bensaid W., Meunier A., de Pollak C., Bourguignon M., Oudina K., Sedel L., Guillemin G., Tissue-engineered bone regeneration, Nat. Biotechnol. 18, (2000), 959-963.
  • 125. Quarto R., Mastrogiacomo M., Cancedda R., Kutepov S.M., Mukhachev V., Lavroukov A., Kon E., Marcacci M., Repair of large bone defects with the use of autologous bone marrow stromal cells, N. Engl. J. Med. 344, (2001), 385-386.
  • 126. Hagege A.A., Carrion C., Menasche P., Vilquin J.T., Dubuc D., Marolleau J.P., Desnos M., Bruneval P., Viability and differentiation of autologous skeletal myoblast grafts in ischeamic cardiomyopathy, Lancet 361, (2003), 491-492.
  • 127. Menasche P., Skeletal muscle satellite cell transplantation, Cardiovasc. Res. 58, (2003), 351-357.
  • 128. Reinecke H., Poppa V., Murry C.E., Skeletal muscle stem cells do not transdifferentiate into cardiomyocytes after cardiac grafting, J. Mol. Cell Cardiol. 34, (2002), 241-249.
  • 129. Radisic M., Euloth M., Yang L., Langer R., Freed L.E., Vunjak-Novakovic G., High-density seeding of myocyte cells for cardiac tissue engineering, Biotechnol. Bioeng. 82, (2003), 403-414.
  • 130. http://www.apligraf.com (07.12.2009).
  • 131. http://www.dermagraft.com (07.12.2009).
  • 132. http://www.biotissue.de/en-ProductsPatientsBioSeedCIntroduction.html (07.12.2009).
  • 133. Vollath D., Nanomaterials: An Introduction to Synthesis, Properties and Applications, Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim, (2008).
  • 134. Larese R.F., D'Agostin F., Crosera M., Adami G., Renzi N., Bovenzi M., Maina, G., Human skin penetration of silver nanoparticles through intact and damaged skin, Toxicology 255, (2009), 33-37.
  • 135. Yates C.C., Whaley D., Babu R., Zhang J., Krishna P., Beckman E., Pasculle A.W., Wells A., The effect of multifunctional polymer-based gels on wound healing in full thickness bacteria-contaminated mouse skin wound models, Biomaterials 28, (2007), 3977-3986.
  • 136. Illić V., Šaponjić Z., Vodnik V., Potkonjak B., Jovančic P., Nedeljković J., Radetić M., The influence of silver content on antimicrobial activity and color of cotton fabrics functionalized with Ag nanoparticles, Carbohyd. Polym. 78, (2009), 564-569.
  • 137. Blaker J.J., Nazhat S.N., Boccaccini A.R., Development and characterisation of silver-doped bioactive glass-coated sutures for tissue engineering and wound healing applications, Biomaterials 25, (2004), 1319-1329.
  • 138. Arora S., Jain J., Rajwade J.M., Paknikar K.M., Cellular responses induced by silver nanoparticles: In vitro studies, Toxicol. Lett. 179, (2008), 93-100.
  • 139. Holder I.A., Durkee P., Supp A.P., Boyce S.T., Assessment of a silver-coated barrier dressing for potential use with skin grafts on excised burns, Burns 29, (2003), 445-448.
  • 140. Schouten C., van den Beucken J.J.J.P., de Jonge L.T., Bronkhorst W.M., Meijer G.J., Spauwen P.H.M., Jansen, J.A., The effect of alkaline phosphatase coated onto titanium alloys on bone responses in rats, Biomaterials 20, (2009), 6407-6417.
  • 141. Lu X., Lv X., Sun Z., Zheng Y., Nanocomposites of poly(L-lactide) and surface-grafted TiO2 nanoparticles: Synthesis and characterization, Eur. Polym. J. 44, (2008), 2476-2481.
  • 142. Brammer K.S., Oh S., Cobb Ch. J., Bjursten L.M., van der Heyde H., Jin S., Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface, Acta Biomat. 5, (2009), 3215-3223.
  • 143. Lübbe A.S., Alexiou Ch., Bergemann Ch., Clinical Applications of Magnetic Drug Targeting, J. Surg. Res. 95, (2001), 200-206.
  • 144. Brusentsov N.A., Gogosov V.V., Brusentsova T.N., Sergeev A.V., Jurchenko N.Y., Kuznetsov A.A., Kuznetsov O.A., Shumakov L.I., Evaluation of ferromagnetic fluids and suspensions for the site-radiofrequency-induced hyperthermia of MX11 sarcoma cells in vitro, J. Magn. Magn. Mater. 225, (2001), 113-117.
  • 145. Jordan A., Scholz R., Maier-Hauff K., Johannsen M., Wust P., Nadobny J., Schirra H., Schmidt H., Deger S., Loening S., Lanksch W., Felix R., Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia J. Magn. Magn. Mater. 225, (2001), 118-126.
  • 146. Maier-Hauff K., Rothe R., Scholz R., Gneveckow U., Wust P., Thiesen B., Feussner A., von Deimling A., Waldoefner N., Felix R., Jordan A., Intracranial Thermotherapy using Magnetic Nanoparticles Combined with External Beam Radiotherapy: Results of a Feasibility Study on Patients with Glioblastoma Multiforme, J. Neuro-Oncol. 81, (2007), 53-60.
  • 147. Weissleder R., Cheng H.-Ch., Bogdanova A., Bogdanov Jr., A., Magnetically labeled cells can be detected by MR imaging, J. Magn. Reson. Imag. 7, (2005), 258-263.
  • 148. Bulte J.W.M., de Cuyper M., Despres D., Frank J.A., Relaxometry, magnetometry, and EPR evidence for three magnetic phases in the MR contrast agent MION-46L, J. Magn. Magn. Mater. 194, (1999), 217-223.
  • 149. Kam N.W.S., Liu Z., Dai H., Carbon Nanotubes as Intracellular Protein Transporters: Generality and Biological Functionality, J. Am. Chem. Soc. 127, (2005), 6021-6026.
  • 150. Harrison B.S., Atala A., Carbon nanotube applications for tissue engineering, Biomaterials 28, (2007), 344-353.
  • 151. Bianco A., Kostarelos K., Prato M., Applications of carbon nanotubes in drug delivery, Curr. Opin. Chem. Biol. 9, (2005), 674-679.
  • 152. Vallet-Regi M., Gonzalez-Calbet J.M., Calcium phosphates as substitution of bone tissues, Prog. Solid State Ch. 32, (2004), 1-31.
  • 153. Søballe, K., Hydroxyapatite ceramic coating for bone implant fixation: Mechanical and histological studies in dogs, Acta Orthopead. 64, (1993), 1-58.
  • 154.Ramesh S., Tan, C.Y., Peralta C.L., Teng W.D., The effect of manganese oxide on the sinterability of hydroxyapatite, Sci. Technol. Adv. Mater. 8, (2007), 257-263.
  • 155. Ziętek M., Konopka T., Radwan-Oczko M., Alloplastyczne wszczepy hydroksyapatytowe w leczeniu zapaleń przyzębia, Polimery w Medycynie 25, (1995), 25-32.
  • 156. Ślósarczyk A., Znaczenie różnych form bioceramiki hydroksyapatytowej dla medycyny, Stomat. Współczesna 4, (1997), 342-346.
  • 157. Oonishi H., Orthopedic applications of hydroxyapatite, Biomaterials 12, (1991), 171-178.
  • 158. Chen F., Lam W.M., Lin C.J., Qiu G.X., Wu Z.H., Luk K.D.K., Lu W.W., Biocompatibility of electrophoretical deposition of nanostructured hydroxyapatite coating on roughen titanium surface: In vitro evaluation using mesenchymal stem cells, J. Biomed. Mater. Res.-B 82B, (2007), 183-191.
  • 159. Deng X., Hao J., Wang Ch., Preparation and mechanical properties of nanocomposites of poly(D,L-lactide) with Ca-deficient hydroxyapatite nanocrystals, Biomaterials 22, (2001),2867-2873.
  • 160. Wang S., Kempen D.H.R., Yaszemski M.J., Lu L., The roles of matrix polymer crystallinity and hydroxyapatite nanoparticles in modulating material properties of photo-crosslinked composites and bone marrom stromal cell responses, Biomaterials 30, (2009), 3359-3370.
  • 161. Zaffe D., Bertoldi C., Consolo U., Accumulation of aluminium in lamellar bone after implantation of titanium plates, Ti-6Al-4V screws, hydroxyapatite granules, Biomaterials 25, (2004), 3837-3844.
  • 162. Porter A.E., Taak P., Hobbs L.W., Coathup M.J., Blunn G.W., Spector M., Bone bonding to hydroxyapatite and titanium surfaces on femoral stems retrieved from human subjects at autopsy, Biomaterials 25, (2004), 5199-5208.
  • 163. Nie X., Leyland A., Matthews A., Deposition of layered bioceramic hydroxyapatite/TiO2 coatings on titanium alloys using and electrophoresis, Surf. Coat. Tech. 125, (2000), 407-414.
  • 164. Peltola T., Jokinen M., Veittola S., Rahiala H., Yli-Urpo A., Influence of sol and stage of spinnability on in vitro bioactivity and dissolution of sol-gel-derived SiO2 fibers, Biomaterials 22, 2001, 589-598.
  • 165. Hench L.L., Bioceramics-From Concept to Clinic, J. Am. Ceram. Soc. 74, (1991), 1487-1510.
  • 166. Hench L.L., Bioceramic J. Am. Ceram. Soc. 81, (1998), 1705-1728.
  • 167. Yukna R.A., Evans G.H., Aichelman-Reidy H.B., Meyer E.T., Clinical Comparison of Bioactive Glass Bone Replacement Graft Material and Expanded Polytetrafluoroethylene Barrier Membrane in Treating Human Mandibular Molar Class II Furcations, J. Periodontol. 72, (2001), 125-133.
  • 168. Yilmaz S., Efouglu E., Kilic A.R., Alveolar ridge reconstruction and/or preservation using root form bioglass cones, J. Clin. Periodontol. 25, (1998), 832-839.
  • 169. Zamet J.S., Darbar U.R., Griffits G.S., Bulman J.S., Brägger U., Bürgin W., Newman, H.N., Particulate bioglass(r) as a grafting material in the treatment of periodontal intrabony defects J. Clin. Periodontol. 24, (1997), 410-418.
  • 170. Ray S.S., Okamoto M., Polymer/layered silicate nanocomposites: a review from preparation to processing, Prog. Polym. Sci. 28, (2003), 1539-1641.
  • 171. Zhuang H., Zheng J.P., Gao H., De Yao K., In vitro biodegradation and biocompatibility of gelatin/montmorillonite-chitosan intercalated nanocomposite, J. Mater. Sci. Mater. Med. 18, (2007), 951-957.
  • 172. Ramay, H.R.R., Zhang, M., Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering, Biomaterials 25, (2004), 5171-5180.
  • 173. Kim H.-W., Noh Y.-J., Koh Y.-H., Kim H.-E., Enhanced performance of fluorine substituted hydroxyapatite composites for hard tissue engineering, Mater. Medicine 14, (2003), 899-904.
  • 174. Kong Y.-M., Bae Ch.-J., Lee S.-H., Kim H.-W., Kim H.-E., Improvement in biocompatibility of ZrO2-Al2O3 nano-composite by addition of HA, Biomaterials 26, (2005), 509-517.
  • 175. Ito Y., Hasuda H., Kamitakahara M., Ohtsuki Ch., Tanihara M., Kang I.-K., Kwon O.H., A composite of hydroxyapatite with electrospun biodegradable nanofibres as a tissue engineering material, J. Biosci. Bioeng. 100, (2005), 43-49.
  • 176. Li Ch., Jin H.-J., Botsaris G.D., Kaplan D.L., Silk apatite composites from electrospun fibres, J. Mater. Res. 20, (2005), 3374-3384.
  • 177. Yoshimoto H., Shin M., Terai H., Vacanti J.P., A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering, Biomaterials, 24, (2003), 2077-2082.
  • 178. Shields K.J., Beckman M.J., Bowlin G.L., Wayne J.S., Mechanical Properties and Cellular Proliferation of Electrospun Collagen Type II, Tissue Eng. 10, (2004), 1510-1517.
  • 179. Subramanian A., Vu D., Larsen G.F., Lin H.-Y., Preparation and evaluation of the electrospun chitosan/PEO fibers for potential applications in cartilage tissue engineering, J. Biomater. Sci. Polym. Ed. 16, (2005), 861-873.
  • 180. Shin H.J., Lee Ch.H., Cho I.H., Kim Y.-J., Lee Y.-J; Kim I.A., Park K.-D., Yui N., Shin J.-W., Electrospun PLGA nanofiber scaffolds for articular cartilage reconstruction: mechanical stability, degradation and cellular responses under mechanical stimulation in vitro, J. Biomater. Sci. Polym. Ed. 17, (2006), 103-119.
  • 181. Neumann T., Hauschka S.D., Sanders J.E., Tissue Engineering of Skeletal Muscle Using Polymer Fiber Arrays, Tissue Eng. 9, (2003), 995-1003.
  • 182. Riboldi S.A., Sampaolesi M., Neuenschwander P., Cossu G., Mantero S., Electrospun degradable polyesterurethane membranes: potential scaffolds for skeletal muscle tissue engineering, Biomaterials 26, (2005), 4606-4615.
  • 183. Sahoo S., Ouyang H., Goh C.-H.J., Goh Tay, T.E., Toh S.L., Characterization of a Novel Polymeric Scaffold for Potential Application in Tendon/Ligament Tissue Engineeing, Tissue Eng. 12, (2006), 91-99.
  • 184. Jeong L., Yeo I.-S., Kim H.N., Yoon Y., Jang D.H,; Jung S.Y., Min B.-M., Park W.H., Plasma-treated silk fibroin nanofibers for skin regeneration, Int. J. Biolog. Macromol. 44, (2009), 222-228.
  • 185. Noh H.K., Lee S.W., Kim J.-M., Oh J.-E., Kim K.-H., Chung Ch.-P., Choi S.-Ch., Park W.H., Min B.-M., Electrospinning of chitin nanofibers: Degradation behavior and cellular response to normal human keratinocytes and fibroblasts, Biomaterials 27, (2006), 3934-3944.
  • 186. Laurencin C.T., Nair L.S., Nanotechnology and Tissue Engineering: The scaffolds, CRC Press Taylor&Francis Group, Boca Raton, (2008).
  • 187. Oksman K., Skrifvars M., Selin J.-F., Natural fibres as reinforcement in polylactic acid (PLA) composites, Comp. Sci. Technol. 63, (2003), 1317-1324.
  • 188. Rabiej M., Rabiej S., Analiza rentgenowskich krzywych dyfrakcyjnych polimerów za pomocą programu komputerowego WAXFIT Publishing House ATH, Bielsko-Biała, (2006).
  • 189. Rabiej M., Application of the genetic algorithms and multi-objective optimisation to the resolution of X-Ray diffraction curves of semicrystalline polymers, Fibres Text. East. Eur. 11, (2003), 83-87.
  • 190. Rabiej M., Application of multicriterial optimization of crystallinity degree of semicrystalline polymers, Polimery 48, (2003), 288-295.
  • 191. Draget K.I., Smidsrod O., Skjak-Brak G., Polysaccharides and Polyamides in the Food Industry. Properties, Production, and Patents: Alginates from Algae, Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim, (2005).
  • 192. Draget I.K., Skjåk-Bræk G., Christensen B.E., Gåserød O., Smidsrød O., Swelling and partial solubilization of alginic acid gel beads in acidic buffer, Carbohyd. Polym. 29, (1996), 209-215.
  • 193. Boguń M., Mikołajczyk T., Sorption and Tensile Strength Properties of Selected Fibres of Cupric Alginate Fibres Text. East. Eur. 16(4), (2008), 39-42.
  • 194. Wołowska-Czapnik D., Nowej generacji włókna alginianowe do zastosowań medycznych, Praca doktorska, Politechnika Łódzka, Łódź, (2006).
  • 195. Haberko K., Haberko M., Pyda W., Pędzich Z., Chłopek J., Mozgawa W., Bućko M., Sawicki B., Patent nr PL 202549 B1 (2009).
  • 196. Ziabicki A., Fizyka procesów formowania włókien z polimerów naturalnych i syntetycznych, Wydawnictwa Naukowo-Techniczne, Warszawa, (1970).
  • 197. Boguń M., Mikołajczyk T., Rabiej S., Effect of formation conditions on the structure and properties of nanocomposite alginate fibers, J. App. Polym. Sci. 114, (2009), 70-82.
  • 198. Boguń M., Rheological Properties of Sodium Alginate Spinning Solutions with Ceramic Nanoadditives, Fibres Text. East. Eur. 17(5), (2009), 17-22.
  • 199. Mikołajczyk T., Boguń M., Rheological properties of spinning solutions polyacrylonitrile in dimethylformamide containing ceramic nanoparticles, Fibres Text. East. Eur. 13(1), (2005), 28-31.
  • 200. Mikołajczyk T., Olejnik M., Rheological Properties of Spinning Solutions of a Modified Polyimidoamide Containing Ceramic Nanoparticles, 13(1), (2005), 24-27.
  • 201. Boguń M., Nowej generacji prekursorowe włókna PAN zawierające ceramiczne nanododatki, Praca doktorska, Politechnika Łódzka, (2007).
  • 202. Ferguson J., Kembłowski Z., Reologia stosowana płynów, Wydawnictwo Marcus s.c, Łódź, (1995).
  • 203. Mikołajczyk T., Boguń M., Szparaga G., Influence of the Type Monmorillonite and the Conditions of Fibre Formation from Polyacrylonitrile Nanocomposite on the Fibre Properties, Fibres Text. East. Eur. 15(3), (2007), 25-31.
  • 204. Stodolak E., Paluszkiewicz C., Bogun M., Blazewicz M., Nanocomposite fibres for medical applications, J. Molecular Struc. 924-926, (2009), 208-213.
  • 205. Boguń M., Rabiej S., The influence of fiber formation an the structure and properties of nanocomposite alginate fibers containing tricalcium phosphate or montmorillonite, Polym. Compos. - w druku.
  • 206. Boguń M., Nanocomposite Calcium Alginate Fibres containing SiCO2 and Bioglass, Fibres Text. East. Eur. - w druku.
  • 207. Nagy V., Vas L.M., Pore Characteristic Determination with Mercury Porosimetry in Polyester Staple Yarns, Fibres Text. East. Eur. 13(3), (2005), 21-26.
  • 208. Lipp-Symonowicz B., Fizyko-Chemiczne aspekty procesu barwienia i rozjaśniania optycznego włókien, Polska Akademia Nauk, Łódź, (2003).
  • 209. Mikołajczyk, T., Rabiej S., Boguń M., Analysis of the structural parameters of poly-acrylonitrile fibers containing nano-hydroxyapatite, J. App. Polym. Sci. 101, (2006), 760-765.
  • 210. Mikołajczyk T., Boguń M., Rabiej S., Comparative analysis of the structural parameters and strength properties of polyacrylonitrile fibers containing ceramic nanoadditives, J. App. Polym. Sci. 105, (2007), 2346-2350.
  • 211. Atkins E.D.T., Nieduszynski I.A., Mackie W., Parker K.D., Smolko E.E., Structural components of alginic acid. I. The crystalline structure of poly-ß-D-mannuronic acid. Results of X-ray diffraction and polarized infrared studies, Biopolymers 12, (1973), 1865-1878.
  • 212. Sikorski P., Frode M., Skjåk-Bræk G., Stokke B.T., Evidence for Egg-Box-Compatible Interactions in Calcium-Alginate Gels from Fiber X-ray Diffraction, Biomacromolecules 8, (2007), 2098-2103.
  • 213. Fabia J., Ślusarczyk C., Gawłowski A., Supermolecular Structure of Alginate Fibres for Medical Aplications Studied by Means of WAXS and SAXS Methods, Fibres Text. East. Eur. 13(5), (2005), 114-117.
  • 214. Katti K.S., Biomaterials in total joint replacement, Colloid Surface B 39, (2004), 133-142.
  • 215. Polanyi M., Das Röntgen-Faserdiagramm Z. Physik 7, (1921), 149-180.
  • 216. Urbańczyk G., Fizyka włókna, WNT Warszawa, (1970).
  • 217. Hermans P.H., Platzek P., The Deformation Mechanism and the Fine Structure of Hydrate Cellulose. IX. The Theoretical Relation Between Swelling Anisotropy and the Characteristic Double Refraction of Oriented Filaments, Kolloid Z. 88, (1939), 68.
  • 218. Alexander L., X-ray Diffraction Methods In Polymer Science Wiley, New York, (1969).
  • 219. Mikołajczyk T., Modyfikacja sposobu wytwarzania włókien poliakrylonitrylowych, Zeszyty Naukowe Politechniki Łódzkiej nr 781, Łódź (1997).
  • 220. Król P., Badania nad strukturą makroskopową włókien nanokompozytowych, Praca dyplomowa Politechnika Łódzka, Wydział Technologii Materiałowych i Wzornictwa Tekstyliów, (2009).
  • 221. Janowska G., Mikołajczyk T., Wołowska-Czapnik D., Boguń M., Effect of the fibre-forming material structure and silica nanoparticles. Thermal properties of alginate fibres, J. Therm. Anal. Cal. 82, (2005), 613-618.
  • 222. Mikołajczyk T., Rabiej S., Olejnik M., Analysis of the amount and type of mont-morillonite on the supermolecular structure, porosity, and properties of polyimi-doamide fibres, J. App. Polym. Sci. 105, (2007), 1937-1946.
  • 223. Mikołajczyk T., Olejnik M., Effect of fiber-forming conditions and type of MMT modifier on the structure and properties of multifunctional polyimideamides nano-composite fibres, J. App. Polym. Sci. 103, (2007), 2940-2944.
  • 224. Boguń M., Mikołajczyk T., Sorption and Tensile Strength Properties of Selected Fibres of Cupric Alginate, Fibres Text. East. Eur. 4, (2008), 39-42
  • 225. Mikołajczyk T., Wołowska-Czapnik D., Boguń M., A new generation of fibers from alginic acid for dressing materials, J. App. Polym. Sci. 107, (2008), 1670-1677.
  • 226. Boguń M., Mikołajczyk T., Szparaga G., Kurzak A., Water-solube nanocomposite sodium alginate fibres, Fibers and Polymers - w druku.
  • 227. Mikołajczyk T., Boguń M., Kurzak A., Szparaga G., Zinc Alginate Fibres with a Tricalcium Phosphate (TCP) Nanoadditive, Fibres Text. East. Eur. 17(2), (2009), 12-18.
  • 228. Boguń M., Mikołajczyk T., Rabiej S.,; Stodolak E., Effect of the Presence of Nanoadditives on the Structure and Properties of Calcium Alginate Fibres, Inżynieria Biomateriałów 89-91, (2009), 188-192.
  • 229. Stodolak E., Błażewicz M., Boguń M., Szparaga G., Bioactive composites with resorbable matrix and nanocomposite fibres for regerative medicine, Materiały konferencyjne 22nd European Conference on Biomaterials, Lausanne (Szwajcaria) 2009.
  • 230. Stodolak E., Gadomska K., Łącz A., Boguń M., Polymer-ceramic nanocomposites for applications in the bone surgery Journal of Physics: Conference Series 146, (2009), 012026.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0010-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.