PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Blow-up for semidiscretization of a localized semilinear heat equation

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper concerns the study of the numerical approximation for the following initial-boundary value problem:[wzór] where f: [0, ∞) → [0, ∞) is a C2 convex, nondecreasing function,(wzór) and ε is a positive parameter. Under some assumptions, we prove that the solution of a semidiscrete form of the above problem blows up in a finite time and estimate its semidiscrete blow-up time. We also show that the semidiscrete blow-up time in certain cases converges to the real one when the mesh size tends to zero. Finally, we give some numerical experiments to illustrate our analysis.
Wydawca
Rocznik
Strony
173--204
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
autor
Bibliografia
  • [1] Abia. L., López-Marcos, J. C., Martinez, J., On the blow-up time convergence, of semidiscretizations of reaction-diffusion equations, Appl. Numer. Math. 26 (1998), 399-414.
  • [2] Bandle, C., Brunner, H., Blow-up in diffusion equations: a survey, J. Comput. Appl. Math. 97 (1998), 3-22.
  • [3] Bebernes, ,L, Eberly, D., Mathematical Problems from Combustion Theory, Appl. Math. Sci. 83 (1989), Springer, Berlin.
  • [4] Bimpong-Bota, K., Ortoleva, P., Ross, ,)., Far-from-equilibrium phenomenon at local sites of reactions, J. Chem. Phys. 60 (1974), 3124-3133.
  • [5] Boni, T. K. , On blow-up and asymptotic behavior of solutions to a nonlinear parabolic equation of second order, Asymptot. Anal. 21 (1999), 187-208.
  • [6] Boni, T. K., Extinction for discretizations of some semilinear parabolic equations, C. R. Acad. Sci. Ser. I 333 (2001), 795-800.
  • [7] Brändle, C., Groisman, P.. Rossi, ,1. D., Fully discrete adaptive methods for a blow-up problem, Math. Models Methods Appl. Sci. 14 (2004), 1425-1450.
  • [8] Chadam, J. M. , Pierce, A., Yin, H. M., The blow-up property of solution to some differential equations with localized nonlinear reaction, ,]. Math. Anal. Appl. 169 (1992), 313-328.
  • [9] Chadam, J. M., Yin, V., A diffusion equation with localized, chemical reactions, Proc. Edinb. Math. Soc. (2), 37 (1994), 101-118.
  • [10] Ferreira, R., Groisman, P., Rossi, ,J. D., Adaptive numerical schemes for a parabolic. problem with blow-up, IMA J. Numer. Anal. 23 (2003). 439-463.
  • [11] Friedman, A., Lacey, A. A., The blow-up time for solutions of nonlinear heat equations with small diffusion, SIAM J. Math. Anal. 18 (1987), 711-721.
  • [12] Friedman, A., McLeod, B., Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J. 34 (1985), 425-477.
  • [13] Fujita., H., On the blowing up of solutions to the cauchy problem ut = ux.x -t- u'+?, J. Sci. Univ. Tokyo 13 (1966), 109-124.
  • [14] Fukuda, I., Suzuki, R., Quasilinear parabolic equations with localized reaction (English summary), Adv. Differential Equatations 10 (2005), 399-444.
  • [15] Groisman, P., Totally discrete explicit and, semi-implicit Euler methods for a blow-up problem in several space dimensions, Gomputing 76 (2006), 325-352.
  • [16] Groisman, P., Rossi, J. D., Asymptotic behaviour for a numerical approximation of a parabolic problem with blowing up solutions, J. Comput. Appl. Math. 135 (2001), 135-155.
  • [17] Groisman, P., Rossi, J. D., Dependence of the blow-up time with respect, to parameters and numerical approximations for a, parabolic problem, Asymptot. Anal. 37 (2004), 79-91.
  • [18] Levine, H. A., The role of critical exponents in Blow-up theorems, SIAM Rev. 32 (1990), 262-288.
  • [19] Olmstead, W. E., Roberts, C. A., Explosion in diffusive strip due to a concentrated nonlinear source, Methods Appl. Anal. 1 (1994), 434 445.
  • [20] Ortoleva, P., Ross, J., Local structures in chemical reactions with heterogeneous catalysis, J. Chem. Phys. 56 (1972), 4397-4452.
  • [21] Roberts, C. A., Recent results on blow-up and quenching for nonlinear volterra equations, J. Comput. Appl. Math. 205 (2007), 736-743.
  • [22] Souplet, P., Blow-up in nonlocal reaction-diffusion equation, SIAM. J. Math. Anal. 29 (1998), 1301-1334.
  • [23] Souplet. P., Uniform blow-up profiles and boundary behavior for diffusion equations with nonlocal nonlinear source, J. Differential Equations 153 (1999), 374-406.
  • [24] Souplet, P., Uniform blow-up profile and boundary behaviour for a non-local reaction-diffusion equation with critical damping, Math. Methods Appl. Sci. 27 (2004). 1819-1829.
  • [25] Wamg, L., Chen, Q., The asymptotic behavior of blow-up solution of localized nonlinear equations, J. Math. Anal. Appl. 200 (1996). 315-321.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0008-0029
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.