PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biosynteza związków poliketydowych przez Aspergillus Terreus

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
PL
Aspergillus terreus jest grzybem nitkowym należącym do gromady Ascomycota. Posiada on szczególną zdolność do biosyntezy poliketydowego metabolitu, będącego inhibitorem reduktazy (S)-3-hydroksy-3-metyloglutarylo-CoA, zwanego kwasem mewinolinowym. Związek ten w postaci laktonu, nazwanego oficjalnie lowastatyną, jest wykorzystywany w medycynie jako lek obniżający poziom endogennego cholesterolu w organizmie człowieka. Niniejsze opracowanie ma formę krótkiej monografii mającej na celu przybliżenie czytelnikowi zagadnień biochemicznych, fizjologicznych, morfologicznych i kinetycznych biosyntezy niektórych metabolitów wtórnych produkowanych przez A. terreus ze szczególnym uwzględnieniem najważniejszego metabolitu, czyli lowastatyny, oraz często jej towarzyszącej (+)-geodyny. W pracy omówione zostały w pierwszej kolejności mechanizmy biochemiczne rządzące biosyntezą lowastatyny oraz (+)-geodyny. Opisany został klaster genów odpowiedzialnych za syntezę enzymów niezbędnych do biosyntezy lowastatyny oraz przedstawione zostały zasady działania syntaz poliketydowych. Szczegółowo pokazano szlak biosyntezy lowastatyny oraz takich oktaketydowych metabolitów, jak sulochryna, (+)-geodyna i kwas astrowy. Podana została także pierwszorzędowa struktura enzymów odpowiedzialnych za biosyntezę lowastatyny. Zagadnienia biochemiczne biosyntezy metabolitów wtórnych A. terreus zostały opracowane w większości na podstawie danych literaturowych. Uzupełniono jednakże niektóre brakujące dane poprzez odtworzenie mechanizmu działania syntazy oktaketydowej antronu emodyny na podstawie ogólnej wiedzy na temat syntaz poliketydowych. Dodatkowo została przeprowadzona na podstawie anotacji częściowo zsekwencjonowanego genomu własna rekonstrukcja sieci metabolicznej dla pierwotnego metabolizmu A. terreus. Skorelowana ona została z danymi fizjologicznymi pochodzącymi z własnych eksperymentów i znalezionymi w literaturze przedmiotu, związanymi na przykład z asymilacją substratów i produkcją metabolitów pierwotnych, jak etanol. Przeprowadzona krótka analiza porównawcza sieci metabolicznej z danymi eksperymentalnymi pozwoliła także na sformułowanie propozycji uzupełnienia „dziur" (holes), czyli brakujących enzymów bądź reakcji w anotacji sieci metabolicznej, szczególnie tych związanych z metabolizmem laktozy. W dalszej części pracy skupiono się na aspektach fizjologicznych procesu biosyntezy metabolitów wtórnych i przedstawiono wpływ składu podłoża oraz warunków procesowych na biosyntezę lowastatyny i (+)-geodyny przez A. terreus. Dzięki wynikom badań eksperymentalnych określony został wpływ źródła węgla i azotu na jednoczesną biosyntezę lowastatyny i (+)-geodyny, co w dalszym etapie badań pozwoliło na sformułowanie modelu kinetycznego procesu biosyntezy lowastatyny przez A. terreus. Dodatkowo przebadany został wpływ takich śladowych substancji odżywczych, jak witaminy, na biosyntezę metabolitów A. terreus. Na podstawie własnych danych eksperymentalnych udowodniono, że niektóre witaminy z grupy B wpływają pozytywnie na biosyntezę lowastatyny. Opracowana została także strategia prowadzenia procesu biosyntezy lowastatyny w bioreaktorze. Udana okazała się próba zminimalizowania produkcji (+)-geodyny poprzez stosowanie odpowiedniej kontroli pH oraz suplementację podłóż witaminami. Kolejnym aspektem omawianym w pracy jest znaczenie morfologii i różnicowania się strzępek grzybni w biosyntezie lowastatyny i (+)-geodyny. Przedstawione zostały czynniki wpływające na morfologię grzybni, wielkość, kształt i formę peletek A. terreus. Przedstawiono także wyniki badań dotyczących wewnętrznej struktury peletek grzybni A. terreus, a różnicowanie się strzępek grzybni zostało skorelowane z biosyntezą lowastatyny i (+)-geodyny. Wreszcie przedstawiono dwa modele biosyntezy lowastatyny przez A. terreus, które można znaleźć w literaturze przedmiotu. Są to model morfologicznie strukturalny oraz sformułowany przez autora niestrukturalny model kinetyczny. Ten drugi model powstał na podstawie wyników badań z hodowli wstrząsanej i został pozytywnie zweryfikowany w procesach bioreaktorowych.
EN
Aspergillus terreus is a filamentous fungus that belongs to the phylum Ascomycota. It is able to biosynthesise a polyketide metabolite, which inhibits (S)-3-hydroxy-3-methylglutaryl-CoA reductase and is called mevinolinic acid. The lactone form of this compound, which was internationally named lovastatin, is used in medicine to decrease the level of the endogenous cholesterol in human organisms. This work is a short monograph, whose aim is to present the biochemical, physiological, morphological and kinetic issues of biosynthesis of selected secondary metabolites produced by A. terreus. The special attention is paid to the most important metabolite, i.e. the aforementioned lovastatin and to (+)-geodin, which frequently accompanies lovastatin in the cultivation processes. In this work the biochemical mechanisms governing lovastatin and (+)-geodin biosynthesis were first presented. The gene cluster, which is responsible for the expression of the enzymes required for lovastatin biosynthesis, was described. Also the action of polyketide synthases was presented. Metabolic pathways of lovastatin biosynthesis and of such octaketide metabolites as sulochrin, (+)-geodin, and asterric acid were described in detail. The biochemical issues of secondary metabolites biosynthesis by A. terreus were mostly elaborated upon the literature data. However, few lacking data were supplemented. The hypothetical action of emodin anthrone octaketide synthase was described on the basis of the general knowledge concerning polyketide synthases. Additionally, the reconstruction of the metabolic network to mainly describe the primary metabolism of A. terreus was made upon the annotation the partially sequenced genome. The results of this reconstruction were correlated with the physiological data originated from own experiments and selected literature data. They concerned the assimilation of substrates and primary metabolites formation, e.g. ethanol. The comparative analysis of the reconstructed metabolic network and the experimental data allowed for the proposal to fill the holes, i.e. lacking enzymes or reactions, in the annotated network, especially those connected with lactose metabolism. In the second part of the work the physiological issues of the biosynthesis of secondary metabolites were discussed. The influence of the medium composition and process conditions on lovastatin and (+)-geodin biosynthesis by A. terreus was presented. Owing to the experimental results the influence of carbon and nitrogen source on the simultaneous lovastatin and (+)-geodin biosynthesis was described. Next, it allowed for the formulation of the kinetic model of lovastatin biosynthesis by A. terreus. Additionally, the influence of such trace nutrients as vitamins on lovastatin and (+)-geodin biosynthesis by A. terreus was studied. On the basis of own experimental data, it was proved that some B-group vitamins positively influence lovastatin biosynthesis. Also the strategy of lovastatin biosynthesis in bioreactor was elaborated. The minimisation of (+)-geodin production was successfully achieved by means of the valid pH control procedure and media supplementation with B-group vitamins. Another issue discussed was the influence of morphology and hyphal differentiation on lovastatin and (+)-geodin biosynthesis. The factors influencing the hyphal morphology, i.e. the size and shape of A. terreus pellets were discussed. Also the experimental results concerning the infrastructure of the pellets were presented and hyphal differentiation was correlated with lovastatin and (+)-geodin biosynthesis. Finally, two kinetic models to describe lovastatin biosynthesis were shown. These are a morphologically structured and an unstructured kinetic models. The latter was formulated by the author of this work upon the experimental results from a shake flask cultures and successfully verified in the bioreactor cultivations.
Rocznik
Tom
Strony
8--154
Opis fizyczny
Bibliogr. 118 poz.
Twórcy
autor
  • Wydział Inżynierii Procesowej i Ochrony Środowiska Politechniki Łódzkiej, Katedra Inżynierii Bioprocesowej, marcinbz@p.lodz.pl
Bibliografia
  • [1] Albers-Schoenberg G., Joshua H., Lopez M.B., Hensens O.D., Springer J.P., Chen J., Ostrove S., Hoffman C.H., Alberts A.W., Patchett A.A.: Dihydromevinolin, a potent hypocholesterolemic metabolite produced by Aspergillus terreus. J. Antibiot. ,34, 507-512, 1981.
  • [2] Alberts A.W., Chen J., Kuron G., Hunt V., Huff J., Hoffman C., Rothrock J., Lopez M., Joshua H., Harris E., Patchett A., Monaghan R., Currie S., Stapley E., Albers-Schonberg G., Hensens O., Hirshfield J., Hoogsteen K., Liesch J., Springer J.: Mevinolin: A highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc. Natl. Acad. Sci. USA, 77, 3957-3961, 1980.
  • [3] Askenazi M., Driggers E.M., Holtzman D.A., Norman T.C., Iverson S., Zimmer D., Boers M.-E., Blomquist P. R., Martinez E.J., Monreal A.W., Feibelman T.P., Mayorga M.E., Maxon M.E., Sykes K., Tobin J.V., Cordero E., Salama S., Trueheart J., Royer J.C., Madden K.T.: Integrating transcriptional and metabolite profiles to direct the engineering of lovastatin-producing fungal strains. Nat. Biotechnol., 21, 150-156, 2003.
  • [4] Auclair K., Kennedy J., Hutchinson R., Vederas J.C.: Conversion of cyclic nonaketides to lovastatin and compactin by a lovC deficient mutant of Aspergillus terreus. Bioorg. Med. Chem. Lett. 11, 1527-1531, 2001.
  • [5] Barrios-Gonzalez J., Banos J.G., Covarrubias A.A., Garay-Arroyo A.: Lovastatin biosynthetic genes of Aspergillus terreus are expressed differentially in solid-state and in liquid submerged fermentation. Appl. Microbiol. Biotechnol. 19, 179-186, 2008.
  • [6] Bizukojć M., Ledakowicz S.: Morphologically structured model for growth and citric acid accumulation by Aspergillus niger. Enz. Microb. Technol. 32, 268-281,2003.
  • [7] Bizukojć M. Ledakowicz S., Sencio B.: Morphological investigations of Aspergillus terreus germinating spores. Proceedings of 5th European Symposium on Biochemical Engineering Science, Stuttgart, Germany, 2004.
  • [8] Bizukojć M., Ledakowicz S.: Wpływ czynników środowiska na wzrost grzybni oraz biosyntezę lowastatyny przez Aspergillus terreus. Biotechnologia- monografie 2(2), 25-36, 2005.
  • [9] Bizukojć M., Ledakowicz S.: A macrokinetic modelling of the biosynthesis of lovastatin by Aspergillus terreus. J. Biotechnol. 130, 422-435, 2007a.
  • [10] Bizukojć M., Ledakowicz S.: Simultaneous biosynthesis of (+)-geodin by a lovastatin-producing fungus Aspergillus terreus. J. Biotechnol. 132, 453-460, 2007b.
  • [11] Bizukojć M., Ledakowicz S.: Biosynthesis of lovastatin and (+)-geodin by Aspergillus terreus in batch and fed-batch culture in the stirred tank bioreactor. Biochem. Eng. J. 42, 198-207, 2008.
  • [12] Bizukojć M., Ledakowicz S.: Physiological, morphological and kinetic aspects of lovastatin biosynthesis by Aspergillus terreus. Biotechnol. J. 4, 647-664, 2009a.
  • [13] Bizukojć M., Ledakowicz S.: The morphological and physiological evolution of Aspergillus terreus mycelium in the submerged culture and its relation to the formation of secondary metabolites. World J. Microbiol. Biotechnol 2009b, in press.
  • [14] Bizukojć M., Pawłowska B., Ledakowicz S.: Supplementation of the cultivation media with B-group vitamins enhances lovastatin biosynthesis by Aspergillus terreus. J. Biotechnol. 127, 258-268, 2007.
  • [15] Bradamante S., Barenghi L., Beretta G., Bonfa M., Rollini M., Manzoni M.: Production of lovastatin examined by an integrated approach based on chemometrics and DOSY-NMR. Biotechnol. Bioeng. 80, 589-593, 2002.
  • [16] Brown M.S., Faust J.R., Goldstein J.L., Kaneko I, Endo A.: Induction of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in human fibroblasts incubated with compactin (ML-236B), a competitive inhibitor of the reductase. J. Biol. Chem., 253, 1121-1128, 1978.
  • [17] Calam C.T., Clutterbuck P.W., Oxford A.E., Raistrick H.: Studies in the biochemistry of micro-organisms: The molecular constitution of geodin and erdin, two chlorine-containing metabolic products of Aspergillus terreus Thorn. Part 3. Possible structural formulae for geodin and erdin. Biochem. J. 41, 458 463, 1947.
  • [18] Carlsen M., Spohr A.B., Nielsen J., Villadsen J.: Morphology and physiology of an ?-amylase producing strain of Aspergillus oryzae during batch cultivations. Biotechnol. Bioeng. 49, 266-267, 2006.
  • [19] Casas Lopez J.L., Sanchez Perez J.A., Fernandez Sevilla J.M., Acien Fernandez F.G., Molina Grima E., Chisti Y.: Production of lovastatin by Aspergillus terreus: effects of the C:N ratio and the principal nutrients on growth and metabolite production. Enz. Microb. Technol. 33, 270-277, 2003.
  • [20] Casas Lopez J.L., Sanchez Perez J.A., Fernandez Sevilla J.M., Acien Fernandez F.G., Molina Grima E.M., Chisti Y.: Fermentation optimization for the production of lovastatin by Aspergillus terreus: use of response surface methodology. J. Chem. Technol. Biotechnol. 79, 1119-1126, 2004a.
  • [21] Casas Lopez J.L., Rodriguez Porcel E.M., Vilches Ferron E.M., Sanchez Perez J.A., Fernandez Sevilla J.M., Chisti Y.: Lovastatin inhibits its own synthesis in Aspergillus terreus. J. Ind. Microbiol. Biotechnol. 31, 48-50, 2004b.
  • [22] Casas Lopez J.L., Sanchez Perez J.A., Fernandez Sevilla J.M., Rodriguez Porcel E.M., Chisti Y.: Pellet morphology, culture rheology and lovastatin production in cultures of Aspergillus terreus. J. Biotechnol. 116, 61-77, 2005.
  • [23] Chen Z.G., Fujii I., Ebizuka Y., Sankawa U.: Emodin O-methyltransferase from Aspergillus terreus. Arch. Microbiol. 158, 29-34, 1992.
  • [24] Chen Z.G., Fujii I., Ebizuka Y., Sankawa U.: Purification and characterization of emodinanthrone oxygenase from Aspergillus terreus. Phytochemistry 38, 299-305, 1995.
  • [25] Chu M., Mierzwa R., Truumees I., King A., Sapidou E., Barrabee E., Terracciano J., Patel M.G., Gulo V.P., Burrier R., Das P.R., Mittelman S., Puar M.S.: A new fungal metabolite, Sch 202596, with inhibitory activity in the galanin receptor GALRI assay. Tetrahedron Lett., 38, 6111-6114, 1997.
  • [26] Clutterbuck P.W., Koerber W., Raistrick H.: Studies in the biochemistry of micro-organisms: The molecular constitution of geodin and erdin, two chlorine-containing metabolic products of Aspergillus terreus Thorn. Part I. The constitutional relationship of geodin and erdin. Biochem. J. 31, 1089-1092,1937.
  • [27] Couch R.D., Gaucher M.: Rational elimination of Aspergillus terreus sulochrin production. J. Biotechnol. 108, 171-178, 2004.
  • [28] Driggers E.M., Brakhage A.A.: Metabolites and fungal virulence. In: Vaidyanathan S., Harrigan G.G., Goodacre R. (eds.) Metabolome analyses: Strategies for Systems Biology. Springer, New York, 2005.
  • [29] Endo A., Kuroda M., Tsujita Y.: ML-236A, ML236B, and ML236C, new inhibitors of cholesterologenesis produced by Penicillium citrinum. J. Antibiot. 29, 1346-1348, 1976.
  • [30] Endo A.: Monacolin K, A new hypocholesterolemic agent produced by a Monascus species. J. Antibiot. 32, 852-854, 1979.
  • [31] Endo A.: The origin of statins. Int. Congr. Ser. 1262, 3-8, 2004.
  • [32] Freudenberg S., Fasold K.-I., Mueller S.R., Siedenberg D., Kretzmer G., Schuegerl K., Giuseppin M.: Fluorescence microscopic investigation of Aspergillus awamori growing on synthetic and complex media and producing xylanase. J. Biotechnol. 46, 265-273, 2006.
  • [33] Friedrich J., Zuzek M., Bencina M., Cimerman A., Strancar A., Radez I.: High-performance liquid chromatographic analysis of mevinolin as mevinolinic acid in fermentation broths. J. Chromat. A, 704, 363-367, 1995.
  • [34] Fujii I., Ebizuka Y., Sankawa U.: Partial purification and some properties of emodin-O methyltransferase from (+)-geodin producing strain of Aspergillus terreus. Chem. Pharm. Bull. 30(6), 2283-2286, 1982.
  • [35] Fujii I., Ebizuka Y., Sankawa U.: A novel anthraquinone ring cleaveage enzyme from Aspergilus terreus. J. Biochem. 103, 878-883, 1988.
  • [36] Fujimoto H., Flasch H., Franck B.: Biosynthese der Seco-antrachinone Geodin und Dihydrogeodin aus Emodin. Chem. Ber. 108, 1224-1228, 1975.
  • [37] Fujii I., lijima H., Tsukita S.: Purification and properties of dihydrogeodin oxidase from Aspergillus terreus. J. Biochem.lQl, 11-18, 1987.
  • [38] Gbewonyo K., Hunt G., Buckland B.: Interactions of cell morphology and transport processes in the lovastatin fermentation. Bioproc. Eng. 8, 1-7, 1992.
  • [39] Gokhale R.S., Tuteja D.: Biochemistry of polyketide synthases. In: Rehm H.-J., Reed G. Biotechnology. A Multi-Volume Comprehensive Treatise. Vol. 10 Special Processes. Wiley-VCH Werlag GmbH, Weinheim, 2001.
  • [40] Goudar C.T., Strevett K.A.: Estimating growth kinetics of Penicillium chrysogenum by non-linear regression. Biochem. Eng. J. 1, 191-199, 1998.
  • [41] Greenspan M.D., Yudkowitz J.B.: Mevinolinic acid biosynthesis by Aspergillus terreus and its relationship to fatty acid biosynthesis. J. Bacterial. 162,704-707, 1985.
  • [42] Gupta K., Mishra P.K., Srivastava P.: A correlative evaluation of morphology and rheology of Aspergillus terreus during lovastatin fermentation. Biotechnol. Bioproc. Eng. 12, 140-146, 2007.
  • [43] Hajjaj H., Niederberger P., Duboc P.: Lovastatin biosynthesis by Aspergillus terreus in a chemically defined medium. Appl. Environ. Microbiol. 67, 2596-2602,2001.
  • [44] Hamanaka T., Higashiyama K., Fujikawa S., Park E.Y.: Mycelial pellet infrastructure and visualization of mycelia and intracellular lipid in a culture of Mortierella alpina. Appl. Microbiol. Biotechnol. 56, 233-238, 2001.
  • [45] Hargreaves J., Park J., Ghisalberti E. L., Sivasithamparam K., Skelton B., White A.H.: New chlorinated diphenyl ethers from an Aspergillus species. J. Nat. Prod. 65, 7-10, 2002.
  • [46] Hendrickson L., Davis C.R., Roach C., Nguyen D.K., Aldrich T., McAda P.C., Reeves C.D.: Lovastatin biosynthesis in Aspergillus terreus: Characterization of blocked mutants, enzyme activities and a multifunctional polyketide synthase gene. Chemistry & Biology 6, 429-439, 1999.
  • [47] Huang K.X., Yoshida Y., Mikawa K., Fujii I., Ebizuka Y., Sankawa U.: Purification and characterization of sulochrin oxidase from Penicillium frequentans. Biol. Pharm. Bull 19, 42-46, 1996.
  • [48] Hutchinson C.R., Kennedy J., Park C., Kendrew S., Auclair K., Vederas J.: Aspects of the biosynthesis of non-aromatic fungal polyketides by iterative polyketide synthases. Antonie van Leeuvenhoek 78, 287-295, 2000.
  • [49] Izumikawa M., Shipley P.R., Hopke J.N., O'Hare T., Xiang L., Noel J.P., Moore B.S.: Expression and characterization of the type II polyketide synthase 1,3,6,8-tetrahydroxynaphthalene synthase from Streptomyces coelicolor A3(2). J. Ind. Microbiol Biotechnol 30, 510-515, 2003.
  • [50] Kaup B.-A., Ehrich K., Pescheck M., Schrader J.: Microparticle-enhanced cultivation of filamentous microorganisms: increased chloroperoxidase formation by Caldariomyces fumago as an example. Biotechnol. Bioeng. 99, 491-498, 2008.
  • [51] Kennedy J., Auclair K., Kendrew S.G., Park C., Vederas J., Hutchinson C.R.: Modulation of polyketide synthase activity by accessory proteins during lovastatin biosynthesis. Science 284, 1368-1372, 1999.
  • [52] Komagata D., Shimada H., Murukawa S., Endo A.: Biosynthesis of monacolins: conversion of monacolin L to monacolin J by a monooxygenase of Monascus ruber. J. Antibiot. 42, 407-412, 1989.
  • [53] Kumar M.S., Jana S.K., Senthil V., Shashanka V., Kumar S.V., Sadhukhan A.K. Repeated fed-batch process for improving lovastatin production. Proc. Biochem. 36, 363-368, 2000.
  • [54] Kysilka R., Kren V.: Determination of Lovastatin (mevinolin) and mevinolinic acid in fermentation liquids. J Chromat., 630, 415-417, 1993.
  • [55] Lai L.-S.T., Kuo C.-M. Tsai S.-Y.: Influence of increased dissolved oxygen tensions by agitation on secondary metabolite production by a mutant of Aspergillus terreus in a 5L fermentor. J. Chin. Inst. Chem. Engrs. 32, 135-142, 2001.
  • [56] Lai L.-S.T., Pan C.C., Tzeng B.K.: Medium optimization for lovastatin production by Aspergillus terreus in submerged cultures. J. Chin. Inst. Chem. Engrs. 33, 517-527, 2002a.
  • [57] Lai L.-S.T., Tsai T.-H., Wang T.C.: Application of oxygen vectors to Aspergillus terreus cultivation. J. Biosci. Bioeng. 94, 453-459, 2002b.
  • [58] Lai L.-S.T., Pan C.C., Tzeng B.K.: The influence of medium design on lovastatin production and pellet formation with a high producing mutant of Aspergillus terreus in submerged cultures. Proc. Biochem. 38, 1317-1326, 2003.
  • [59] Lai L.-S.T., Tsai T.-H., Wang T.C., Cheng T.Y.: The influence of culturing environments on lovastatin production by Aspergillus terreus in submerged cultures. Enz. Microb. Technol. 36, 737-748, 2005.
  • [60] Lai L.-S.T., Hung C.S., Lo C.C.: Effects of lactose and glucose on production of itaconic acid and lovastatin by Aspergillus terreus ATCC20542. J. Biosci. Bioeng. 104,9-13,2007.
  • [61] Lingappa K., Babu C.S.V.: Production of lovastatin by solid state fermentation of carob (Ceratonia siliqua) pods using Aspergillus terreus KLVB 28. Indian J. Microbiol.45, 283-286, 2005.
  • [62] Lisowska K., Bizukojć M., Długoński J.: An unstructured model for studies on phenanthrene bioconversion by filamentous fungus Cunninghamella elegans. Enz. Microb. Technol. 39, 1464-1470, 2006.
  • [63] Liu G., Xu Z., Cen P.: A morphologically structured model for mycelial growth and secondary metabolite formation Chin. J. Chem. Eng. 8, 46-51, 2000.
  • [64] Ma S.M., Tang Y.: Biochemical characterisation of the minimal polyketide synthase domains in the lovastatin nonaketide synthase. FEBS J. 274, 2854- 2864, 2007.
  • [65] Mahmoodian A., Stickings C.E.: Metabolites of Penicillium frequentans Westling: isolation of sulochrin, asterric acid, (+)-bisdechlorogeodin and two new substituted anthraquinones, questin and questinol. Biochem. J. 92, 369-378, 1964.
  • [66] Manzoni M., Rollini M., Bergomi S., Cavazzoni V.: Production and purification of statins from Aspergillus terreus strains. Biotechnol. Techn. 12, 529-532, 1998.
  • [67] Manzoni M., Bergomi S., Rollini M., Cavazzoni V.: Production of statins by filamentous fungi. Biotechnol. Lett. 21, 253-257, 1999.
  • [68] Manzoni M., Rollini M.: Biosynthesis and biotechnological production of statins by filamentous fungi and application of these cholesterol-lowering drugs. Appl. Microbiol. Biotrechnol. 58, 555-564, 2002.
  • [69] Metz B., Kossen N.W.F.: The growth of molds in the form of pellets - a literature review. Biotechnol. Bioeng. 19, 781-799, 1977.
  • [70] Metz B., Kossen N.W.F., van Suijdam J.C.: The rheology of mold suspensions. Adv. Biochem. Eng., 11, 103-156, 1979.
  • [71] Miao X.-S., Metcalfe C.D.: Determination of cholesterol-lowering statin drugs in aqueous samples using liquid chromatography-electrospray ionization tandem mass spectrometry. J. Chromat. A, 998, 133-141, 2003.
  • [72] Monaghan R.L., Alberts A.W., Hoffman C.H., Albers-Schonberg G.: Hypocholesterolemic fermentation products and process of preparation. United States Patent 4,231,938, 1980.
  • [73] Moore B.S., Hopke J.N.: Discovery of a few bacterial polyketide biosynthetic pathway. Chem. Biochem. 2, 35-38, 2001.
  • [74] Moriya Y., Itoh M., Okuda S., Yoshizawa A.C., Kanehisa M.: KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Research 35 Web Server Issue doi: 10.1093/nar/gkm321, 2007.
  • [75] Morovjan G., Szakacs G., Fekete J.: Monitoring of selected metabolites and biotransformation products from fermentation broths by high-performance liquid chromatography. J. Chromat. A, 763, 165-172, 1997.
  • [76] Moser A.: Bioprocess technology. Kinetics and Reactors. Springer-Verlag Inc., New York 1988.
  • [77] Nielsen J.: Modelling the growth of filamentous fungi Adv. Biochem. Eng./Biotechnol. 46, 187-223, 1992.
  • [78] Nielsen J. Modelling the morphology of filamentous microorganism. Trends Biotechnol. 14, 438-443, 1996.
  • [79] Nielsen J., Villadsen J., Liden G.: Bioreaction Engineering Principles. Kluwer Academic/Plenum Publishers, New York, 2003.
  • [80] Novak N., Gerdin S., Berovic M.: Increased lovastatin formation by Aspergillus terreus using repeated fed-batch process. Biotechnol. Lett. 19, 947-948, 1997.
  • [81] Papagianni M.: Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv. 22, 189-259, 2004.
  • [82] Park Y., Tamura S., Koike Y., Toriyama Y., Okabe M.: Mycelial pellet infrastructure visualization and viability prediction in a culture of Streptomyces fradiae using confocal scanning laser microscopy. J. Ferment. Bioeng. 84, 483-486, 1997.
  • [83] Paul G.C., Kent C.A., Thomas C.R.: Image analysis for characterizing differentiation of Penicillium chrysogenum. Trans IChemE (Part C) 72:95-105, 1994.
  • [84] Paul G.C., Thomas C.R.: Characterisation of mycelial morphology using image analysis. Adv Biochem Eng/Biotechnol 60, 1-59, 1998.
  • [85] Raistrick H., Smith G.: The metabolic products of Aspergillus terreus Thorn. Part II. Two new chlorine-containing mould metabolic products, geodin and erdin. Biochem. J. 30, 1315-1322, 1936.
  • [86] Rao K.V., Sadhukhan A.K., Veerender M., Ravikumar V., Mohan E.V.S., Dhanvantri S.D., Sitaramkumar M., Moses Babu J., Vyas K., Om Reddy G.: Butyrolactones from Aspergillus terreus. Chem. Pharm. Bull 48(4) 559-562, 2000.
  • [87] Renirie R., Hemrika W., Wever R.: Peroxidase and phosphatase activity of active-site mutants of vanadium chloroperoxidase from the fungus Curvularia inaequalis. Implications for the catalytic mechanisms J. Biol. Chem. 275, 11650-11657,2000.
  • [88] Rix U., Fischer K., Remsing L.L., Rohr J.: Modification of post-PKS tailoring steps through combinatorial biosynthesis. Nat. Prod. Rep. 19, 542-580, 2002.
  • [89] Rodriguez Porcel E.M., Casas Lopez J.L., Sanchez Perez J.A., Fernandez Sevilla J.M., Chisti Y.: Effects of pellet morphology on broth rheology infermentations of Aspergillus terreus. Biochem. Eng. J. 26, 139-144, 2005.
  • [90] Rodriguez Porcel E.M., Casas Lopez J.L., Sanchez Perez J.A., Fernandez Sevilla J.M., Garcia Sanchez J.L., Chisti Y.: Aspergillus terreus broth rheology, oxygen transfer, and lovastatin production in a gas-agitated slurry reactor. Ind. Eng. Chem. Res. 45, 4837-4843, 2006a.
  • [91] Rodriguez Porcel E.M., Casas Lopez J.L., Vilches Ferron M.A., Sanchez Perez J.A., Garcia Sanchez J.L., Chisti Y.: Effects of the sporulation conditions on the lovastatin production by Aspergillus terreus. Bioproc. Biosvs. Eng. 29, 1-5, 2006b.
  • [92] Rodriguez Porcel E.M., Casas Lopez J.L., Sanchez Perez J.A., Chisti Y.: Enhanced production of lovastatin in a bubble column by Aspergillus terreus using a two-stage feeding strategy, J. Chem. Technol. Biotechnol. 82, 58-64, 2007.
  • [93] Rodriguez Porcel E.M., Casas Lopez J.L., Sanchez Perez J.A., Chisti Y.: Lovastatin production in a two-staged feeding operation. J. Chem. Technol. Biotechnol. 83, 1236-1243, 2008.
  • [94] Sato S., Okusa N., Ogawa A., Ikenoue T., Seki T., Tsuji T.: Identification and preliminary SAR studies of (+)-geodin as a glucose uptake stimulator for rat adipocytes. J. Antibiot., 58, 583-589, 2005.
  • [95] Schimmel T.G., Coffman A.D., Parsons, S.J.: Effect of butyrolactone I on the producing fungus Aspergillus terreus. Appl. Environ. Microbiol. 64, 3707-3712, 1998.
  • [96] Schimmel T.G., Parsons S.J.: High purity, high yield procedure for butyrolactone I production from Aspergillus terreus. Biotechnol. Techn. 13, 379-384, 1999.
  • [97] Shen B.: Polyketide biosynthesis beyond the type I, II, III polyketide synthase paradgims. Curr. Opin. Chem. Biol. 7, 285-295, 2003.
  • [98] Shinohara C., Chikanishi T., Nakashima S., Hashimoto A., Hamanaka A., Endo A., Hasumi K.: Enhancement of fibrynolytic activity of vascular endothelial cells by chaetoglobosin A, crinipellin B, geodin and triticone B. J. Antibiot., 53, 262-268, 2000.
  • [99] Smith D.C., Wood T.M.: Xylanase production by Aspergillus awamori. Development of a medium and optimization of the fermentation parameters for the production of extracellular xylanase and ß-xylosidase while maintaining low protease production. Biotechnol. Bioeng. 38, 883-890, 1991.
  • [100] Sorensen J.L., Auclair K., Kennedy J., Hutchinson C.R. Vederas J.C.: Transformations of cyclic nonaketides by Aspergillus terreus mutants blocked for lovastatin biosynthesis at the lovA and lovC genes. Org. Biomol. Chem., 1, 50-59, 2003.
  • [101] Staunton J., Weissman K.: Polyketide biosynthesis: a millenium review. Nat. Prod. Rep. 18, 380-416, 2001.
  • [102] Steinberg D.: An interpretative history of the cholesterol controversy, part V: The discovery of statins and the end of the controversy. J. Lipid Res. 47, 1339-1351,2006.
  • [103] Sutherland A., Auclair K., Vederas J.C.: Recent advances in the biosynthetic studies of lovastatin. Curr. Opin. Drug. Discov. Develop. 4, 229-236, 2001.
  • [104] Szakacs G., Morovjan G., Tengerdy R.P.: Production of lovastatin by a wild strain of Aspergillus terreus. Biotechnol. Lett. 20, 411-415, 1998.
  • [105] Tobert J. A.: Lovastatin and beyond: the history of the HMG-CoA reductase inhibitors. Nature Reviews: Drug Discovery 2, 517-526, 2003.
  • [106] Tucker K. G., Thomas C. R.: Mycelial morphology: The effect of spore inoculum level. Biotechnol. Lett. 14, 1071-1074, 1992.
  • [107] Vanhoutte B., Pons M.-N., Thomas C.R., Louvel L., Vivier H.: Characterization of Penicillium chrysogenum physiology in submerged cultures by color and monochrome image analysis. Biotechnol. Bioeng. 48, 1-11, 1995.
  • [108] Vazquez-Duhalt R., Ayala M., Marquez-Rocha F.J.: Biocatalytic chlorination of aromatic hydrocarbons by chloroperoxidase of Caldariomyces fumago. Phytochemistry 58, 929-933, 2001.
  • [109] Vinci V.A., Hoerner T.D., Coffman A.D., Schimmel T.G., Dabora R.L., Kirkepar A.C., Ruby C.L., Stieber R.W.: Mutants of a lovastatin-hyperproducing Aspergillus terreus deficient in the production of sulochrin. J. Ind. Microbiol. 8, 113-120, 1991.
  • [110] Wei P., Xu Z., Cen P.: Lovastatin production by Aspergillus terreus in solid-state fermentation. J. Zheijiang Univ. Sci. A 8, 1521-1526, 2007.
  • [111] Witter D.J., Vederas J.C.: Putative Diels-Alder-catalyzed cyclization during the biosynthesis of lovastatin. J. Org. Chem., 61, 2613-2623, 1996.
  • [112] Xie X., Watanabe K., Wojcicki W., Wang C.C.C., Tang Y.: Biosynthesis of lovastatin analogs with a broadly specific acyltransferase. Chem. Biol. 13, 1161-1169,2006.
  • Strony internetowe:
  • [1] BRENDA: http://www.brenda-enzymes.org
  • [2] KEGG Kyoto Encyclopedia of Genes and Genomes: http://www.kegg.jp
  • [3] PubMed: http://www.pubmedcentral.nih.gov
  • [4] The Aspergillus Website. Fungal Research Trust: http://www.aspergillus.org.uk
  • [5] UniProtKB, Swiss-Prot and TrEMBL: http://www.expasv.ch/sprot
  • [6] UVa FASTA Server: http://fasta.bioch.virginia.edu/fasta_www2/fasta_list2.shtml
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0008-0009
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.