PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

When an atomic and complete algebra of sets is a field of sets with nowhere dense boundary

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We consider pairs (A,H(A)} where A is an algebra of sets from some class called the class of algebras of type (k, λ) and where H(A) is the ideal of hereditary sets of A. We characterize which of the above pairs are topological, that is, which are fields of sets with nowhere dense boundary for some topology together with the ideal of nowhere dense sets for this topology. Making use of a theorem of Fichtenholz and Kantorovich which says that in P(k) there is an independent family of cardinality 2K, we construct an example of a pair (algebra, ideal} with complete quotient algebra and the hull property but not topological. This countrexample, given in ZFC, provides the complete solution of a problem posed in [1]. Such an algebra was constructed in [5] under some aditional set theoretic assumption.
Wydawca
Rocznik
Strony
119--127
Opis fizyczny
Bibliogr. 13 poz.
Twórcy
autor
Bibliografia
  • [1] Balcerzak, M., Bartoszewicz, A.. Ciesielski, K., Algebras with inner MB-representation, Real Anal. Exchange 29(1) (2003/04), 265-273.
  • [2] Balcerzak, M., Bartoszewicz, A., Rzepecka. ,J. Wroński, S., Marczewski fields and ideals. Real Anal. Exchange 26(2) (2000-2001), 703-715.
  • [3] Balcerzak, M., Rzepecka, J., Marczewski sets in the Hashimoto topologies for measure and category, Acta Univ. Carolin. Math. Phys. 39 (1998), 93-97.
  • [4] Baldwin, S., The Marczewski hull property and complete Boolean algebras. Real Anal. Exchange 28 (2002/2003), 415-428.
  • [5] Bartoszewicz, A., On some algebra of sets in Steprans strong-Q-sequence model. Topology Appl. 149(1-3) (2005). 9-15.
  • [6] Bartoszewicz, A., Marczewski-Burstin representation of Boolean, algebras isomorphic to a power set, Bull. Polish Acad. Sci. Math.. 53 (2005). 239-250.
  • [7] Brown, J. B., Elalaoui-Talibi, H., Marczewski-Burstin- like characterizations of ?-algebras, ideals, and measurable functions, Colloq. Math. 82 (1999), 227-286.
  • [8] Ciesielski, K., Jasiński, J., Topologies making a given ideal nowhere dense or meager, Topology Appl. 63 (1995), 277-298.
  • [9] Elalaoui-Talibi, H., On Marczewski-Burstin like characterizations of certain ? algebras and ? -ideals. Real Anal. Exchange 26(1) (2000/2001), 413 415.
  • [10] Fremlin. D., Measure algebras, in "Handbook of Boolean Algebras. Vol. 3", edited by .J. D. Monk and R. Bonnet, North-Holland, Amsterdam 1989.
  • [11] Koppelberg, S., General theory of Boolean algebras, in "Handbook of Boolean Algebras. Vol. 1", edited by J. D. Monk and R. Bonnet, North-Holland, Amsterdam 1989.
  • [12] J. Pawlikowski, Parametrized Ellentuck theorem. Topology Appl. 37 (1990), 65-73.
  • [13] J. Steprans, Strong-Q-sequences and variations on Martin's Axiom, Canad. .J. Math. 37(4), (1985), 730 746.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0006-0037
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.