PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Specializing Aronszajn tree and preserving some weak diamonds

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We show that [wzór) together with CH and "all Aronszajn trees are special" is consistent relative to ZFC. The weak diamond for the covering relation of Lebesgue null sets was the only weak diamond in the Cichori diagramrne for relations whose consistency together with "all Aronszajn trees are special" was not yet settled. Our forcing proof gives also new proofs to the known consistencies of several other weak diamonds stemming from the Cichori diagramme together with "all Aronszajn trees are special" and CH. The main part of our work is an application [15, Chapter V, §§ 1-7] for a special completeness system, such that we have a genericity game. Thus we show new preservation properties of the known forcings.
Wydawca
Rocznik
Strony
47--78
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
Bibliografia
  • [1] Abraham, U., Proper forcing, in "Handbook of Set Theory", M. Foreman. A. Kanamori and M. Magidor, Eds., Kluwer, (to appear).
  • [2] Abraham, U., Shelah, S., A ?22, well-order of the reals and, incompactness of L(QMMl), Ann. Pure Appl. Logic 59 (1993), 1-32.
  • [3] Bartoszyński, T., Judah, H., Set Theory,On the Structure of the Real Line, A K Peters, Wellesley, Massachusetts, 1995.
  • [4] Baumgartner, J., Harrington, L., Kleinberg, E., Adding a closed unbounded, set, J. Symbolic Logic, 41 (1976), 481-482.
  • [5] Blass, A., Shelah, S., There may be simple PN1 - and PN2 -points and the Rudin-Keisler ordering may be downward directed, Ann. Pure Appl. Logic, 33 (1987), 213-243.
  • [6] Devlin, K., Johnsbraten, H., The Souslin Problem, Lecture Notes in Math. 405. Springer-Verlag, Berlin-New York, 1974.
  • [7] Devlin, K. J., Shelah, S., A weak version of ? which follows from 2N0 < 2N1, Israel J. Math. 29 (1978), 239-247.
  • [8] Hirschorn. J., Random trees under CH, Israel J. Math. 157 (2007), 123-154.
  • [9] Jensen, R. B., The fine structure of the. constructive hiercharchy, Ann. Math. Logic 4 (1972), 229-308.
  • [10] Kechris, A., Classical Descriptive Set Theory, Grad. Texts in Maths. 156, Springer- Verlag, New York, 1995.
  • [11] Laver, R., Random reals and Souslin trees, Proc. Amer. Math. Soc. 100(3) (1987), 531-534.
  • [12] Mildenberger, H., Creatures on ?1 and weak diamonds, J. Symbolic Logic: 74 (2009), 1-16.
  • [13] Miller, A., Arnie Miller's problem list, in "Set theory of the reals" (Ramat Gan. 1991), Israel Math. Conf. Proc. 6 (1993), Bar-Ilan Univ., Ramat Gan, 645-654.
  • [14] Moore, J. T., Hrušák, M., Džamonja, M., Parametrized ?-principles, Trans. Amer. Math. Soc. 356 (2004), 2281-2306.
  • [15] Shelah, S., Proper and Improper Forcing, 2nd edition, Springer-Velag, Berlin, 1998.
  • [16] Vojtáš, P., Generalized Galois-Tukey connections between explicit relations on classical objects of real analysis, in "Set theory of the reals" (Ramat Gan, 1991), Israel Math. Conf. Proc. 6 (1993), Bar-Ilan Univ., Ramat Gan, 619-643.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0006-0034
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.