Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We relax the regularity conditions on potentials of higher-dimensional periodic Schrodinger operators while their resolvents may still be denned as compact operators on L2. This enables us to define the Bloch varieties locally as the zero locus of a holomorphic map in a more general setting. We also give an asymptotic description of the Fermi curve.
Wydawca
Czasopismo
Rocznik
Tom
Strony
33--46
Opis fizyczny
Bibliogr. 9 poz.
Twórcy
Bibliografia
- [1] Adams, R. A., Fournier, J. .J. F., Sobolev Spaces, Academic Press, Oxford, 2003.
- [2] Bennett, C., Sharpley, R., Interpolation of Operators, Academic Press, Boston, 1988.
- [3] Feldman. J., Knörrer, H., Trubowitz, E., The perturbatively stable spectrum of a periodic Schrödinger operator, Invent. Math. 100 (1990), 259-300.
- [4] Feldman, J., Knörrer, H., Trubowitz, E., Riemann Surfaces of Infinite Genus, Amer. Math. Soc., Providence, 2003.
- [5] Kuchment, P., Floquet Theory for Partial Differential Equations, Birkhäser, Basel. 1993.
- [6] Schmidt, M. U., A proof of the Willmore. conjecture., arXiv preprint. math.DG/0203224v2.
- [7] SEMMES, S., A primer on Hardy spaces, and some remarks on a theorem of Evans and Müller, Commun. in Partial Differential Equations 19 (1994), 277-319.
- [8] STEIN, E. M., Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton, New Jersey, 1970.
- [9] YOSIDA, K., Functional Analysis, Springer-Verlag, Berlin, 1995.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0006-0033