Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we study fixed points of solutions of the differential equation f" + A1 (z) f' + A0 (z) f = 0, where Aj (z) ( ≡ ≠ 0) (j = 0,1) are transcendental meromorphic functions with finite order. Instead of looking at the zeros of f (z) - z, we proceed to a slight generalization by considering zeros of g (z) -φ(z), where g is a differential polynomial in f with polynomial coefficients,φ is a small meromorphic function relative to f, while the solution f is of infinite order.
Wydawca
Czasopismo
Rocznik
Tom
Strony
259--271
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
autor
- Department of Mathematics Laboratory of Pure and Applied Mathematics University of Mostaganem, BELAIDI@UNIV-MOSTA.DZ
Bibliografia
- [1] Chen, Z. X., Zeros of meromorphic solutions of higher order linear differential equations, Analysis (Oxford) 14 (1994), 425-438.
- [2] Chen, Z. X., The fixed points and hyper order of solutions of second order complex differential equations (in Chinese), Acta Math. Sci. Ser. A Chin. Ed. 20(3) (2000), 425-432.
- [3] Chen, Z. X., Shon, K. H., On the growth and fixed points of solutions of second order differential equations with meromorphic coefficients, Acta Math. Sin. (Engl. Ser.) 21(4) (2005), 753-764.
- [4] Gundersen, G. G., On the. question of whether f" + e~z f` + Q (z)f = 0 can admit a solution f L 0 of finite order, Proc. Roy. Soc. Edinburg Sect. A 102 (1986), 9-17.
- [5] Gundersen, G. G., Finite order solutions of second order linear differential equations. Trans. Amer. Math. Soc. 305 (1988), 415-429.
- [6] Gundersen, G. G., Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates, J. London Math. Soc. (2) 37 (1988), 88-104.
- [7] Hayman, W. K., Meromorphic Functions, Clarendon Press, Oxford, 1964.
- [8] Hayman, W. K., The local growth of power series: a survey of the Wiman-Valiron method, Canad. Math. Bull. 17 (1974), 317-358.
- [9] Kinnunen, L., Linear differential equations with solutions of finite iterated order, Southeast Asian Bull. Math. 22(4) (1998), 385-405.
- [10] Laine, I., Nevanlinna Theory and Complex Differential Equations, Walter de Gruyter. Berlin-New York, 1993.
- [l1] Laine, I., Rieppo, J., Differential polynomials generated by linear differential equations, Complex Var. Theory Appl. 49(12) (2004), 897-911
- [12] Liu, M. S., Zhang, X. M., Fixed points of meromorphic solutions of higher order Linear differential equations, Ann. Acad. Sci. Fenn. Math. 31 (2006), 191-211.
- [13] Nevanlinna, R., Eindeutige Analytische Funktionen (in German), Zweite Auflage. Reprint. Grundlehren Math. Wiss. 46, Springer-Verlag, Berlin-New York, 1974.
- [14] Valiron, G., Lectures on the General Theory of Integral Functions, Chelsea, New York, 1949.
- [15] Wang, J. and Yi, H. X., Fixed points and hyper order of differential polynomials generated by solutions of differential equation, Complex Var. Theory Appl. 48(1) (2003), 83-94.
- [16] Yang, C. C., Yi, H. X., Uniqueness theory of meromorphic functions, Math. Appl. 557, Kluwer Acad. Publ. Group, Dordrecht, 2003.
- [17] Zhang, Q. T., Yang, C. C., The Fixed Points and Resolution Theory of Meromorphic Functions (in Chinese), Beijing Univ. Press, Beijing, 1988.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0006-0030