Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
For each pointclass Γ ⊆ P(2ω) define U[Γ] as the collection of all X⊆ 2ω such that the preimage f− 1(X) belongs to Γ for each continuous f : 2ω → 2ω. We study the properties of and possible rela-tionships among the classes U[Γ], where Γ ranges over the σ-algebras (l), (m), the completely Ramsey sets, and the sets with the Baire property. We also prove some results about cardinal coefficients of U[Γ] for the general case of Marczewski-Burstin representable σ-algebras Γ. We finish by posing some unsolved problems.
Wydawca
Czasopismo
Rocznik
Tom
Strony
227--238
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
Bibliografia
- [1] Balcerzak, M., Bartoszewicz, A., Rzepecka, J., Wroński, S., Marczewski fields and ideals, Real Anal. Exchange 26(2) (2000/2001), 703-715.
- [2] Bartoszewicz, A., Kotlicka, E., Relationships between continuity and abstract measurability of functions, Real Anal. Exchange 31(1) (2005/2006), 73-96.
- [3] Bartoszyński, T. Remarks on small sets of reals, Proc. Amer. Math. Soc. 131(2) (2003), 625-630.
- [4] Bartoszyński, T., Judah, H., Borel images of sets of reals, Real Anal. Exchange 20(2) (1994/5), 536-558.
- [5] Brendle, J., Strolling through paradise, Fund. Math. 148 (1995), 1-25.
- [6] Brendle, J., Löwe, B., Solovay-type characterizations for forcing-algebras, J. Symbolic Logic 64 (1999), 1307-1323.
- [7] Brown, J. B., Elalaoui-Talibi, H., Marczewski-Burstin-like characterizations of ?-algebras, ideals, and measurable functions, Colloq. Math. 82 (1999), 277-286.
- [8] Burstin, C., Eigenschaften messbaren und nichtmessbaren Mengen, Wien Ber. 123 (1914), 1525-1551.
- [9] Corazza, P., Ramsey sets, the Ramsey ideal, and other classes over R, J. Symbolic Logic 57(4) (1992), 1441-1468.
- [10] Darji, U., On completely Ramsey sets, Colloq. Math. 64(2) (1993), 163-171.
- [11] Galvin, F., Prikry, K., Borel sets and Ramsey's theorem, J. Symbolic Logic 38 (1973). 193-198.
- [12] Goldstern, M., Johnson, M., Spinas, O., Towers on trees, Proc. Amer. Math. Soc. 122 (1994), 557-564.
- [13] Grzegorek, E., Always of the first category sets, Proceedings of the 12th Winder School on Abstract Analysis (Srni, 1984), Rend. Circ. Mat. Palermo (2) Suppl. 6 1984, 139-147.
- [14] Grzegorek, E., Always of the first category sets (11). Proceedings of the 13th Winter School on Abstract Analysis (Srni. 1985). Rend. Circ. Mat. Palermo (2) Suppl. 10 (1985). 43-48.
- [15] Kechris, A. S.; A notion of smallness for subsets of the Baire space. Trails. Amer. Math. Soc. 229 (1977), 191-207.
- [16] Kechris, A. S., Classical Descriptive Set Theory, Springer. Berlin. 1995.
- [17] Kysiak. M., Nowik, A., Weiss, T., Special subsets of the reals and tree, forcing notions. Proc. Amer. Math. Soc. 135 (2007), 2975-2982.
- [18] Löwe, B., Uniform unfolding and, analytic, measurability, Arch. Math. Logic 37(8) (1998), 505-520.
- [19] Mathias, A. R. D., On a, generalization of Ramsey's theorem-. Notices Amer. Math. Soc. 15 (1968), 931.
- [20] Nowik. A., Possibly there is no uniformly completely Ramsey null set of size 2?. Colloq. Math. 93(2) (2002), 251-258.
- [21] Pawlikowski, J., Parametrized Ellentuck theorem, Topology Appl. 37 (1990), 65 73.
- [22] Silver, J. Every analytic set is Ramsey, J. Symbolic Logic 35 (1970). 60-64.
- [23] Zakrzewski, P., Universally meager sets, Proc. Amer. Math. Soc. 129(6) (2001), 1793-1798.
- [24] Zakrzewski. P. Universally meager sets. II. Topology Appl. 155 (2008), 1445-1449.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0006-0027