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Abstract:   In this contribution a problem of heat con-

duction in a laminate with functionally graded macrostructure is 

considered. This composite is made of two components, which 

are non-periodically distributed in laminae with constant thick-

ness. Macroscopic (effective) properties of this composite are 

continuously varied along an axis perpendicular to laminae. In 

this note an averaged model of heat conduction is applied. This 

model is based on concepts of the tolerance averaging tech-

nique, cf. Woźniak and Wierzbicki [9]. 

Key words:  heat conduction, laminate, functionally gra-

ded materials, tolerance averaging. 

1. INTRODUCTION 

The object of considerations is a laminate made of two 

conductors, non-periodically distributed along a direction 

normal to laminae. It is assumed that macroscopic (aver-

aged) properties of such composite vary continuously 

along this direction, cf. Fig. 1a. However, the microstruc-

ture of this composite is shown in Fig. 1b. This laminate 

can be referred to a functionally graded material (FGM), 

cf. Suresh and Mortensen [7]. 

Thermomechanical phenomena in FGM-type composites 

can be investigated only in the framework of microme-

chanical models with idealised geometries. To describe 

these composites methods proposed for macroscopically 

homogeneous materials are usually applied. 

Some fundamental methods used to determine properties 

of FGM-type composites are discussed in the book [7]. 

Between various models it can be mentioned those based 

on the asymptotic homogenization. However, governing 

equations of these models neglect usually the effect of the 

microstructure size on the overall behaviour of laminates. 

Other technique to the modelling various problems of 

FGM-type composites is proposed by Aboudi et al. [1] 

and called the higher order theory. This theory describes 

some effects of the microstructure. 

An alternative approach used to analyse FGM-type com-

posites is the tolerance averaging technique. This ap-

proach has been proposed to the modelling non-stationary 

problems of periodic composites and structures and is 

discussed in the book [9] by Woźniak and Wierzbicki. In 

the last years this technique was adopted to analyse vari-

ous problems of FGM-type composites, cf. Jędrysiak et 

al. [3], Rychlewska et al. [6], Szymczyk and Woźniak [8]. 
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Fig. 1. A fragment of the laminate: a) on the macrolevel, b) on 

the microlevel 

This modelling approach was also applied to investigate 

heat conduction problems, cf. Jędrysiak and Radzikowska 

[2], Michalak et al. [4], Radzikowska and Jędrysiak [5], 

described by the known differential equation of the Fou-

rier’s model. For FGM-type laminates this heat conduc-

tion equation has highly-oscillating, non-continuous, 

functional coefficients. The tolerance averaging technique 

applied to this equation leads to the system of differential 

equations with continuous, slowly-varying coefficients. 

The aim of this paper is a comparison between results 

obtained in the framework of the tolerance averaging 
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technique and those within the higher order theory for  

a stationary heat conduction across laminae. 

2. PRELIMINARIES 

Let indices i, j, … run on 1, 2, 3 and be related to the Car-

thesian coordinate system Ox1x2x3. Moreover, indices α, 
β, … run on 2, 3 and are related to the system Ox2x3. Let 

us denote: x≡(x2,x3), x≡x1 and t as a time coordinate. 

There are also denoted by 
jiji ∂∂≡∂ K

K
 derivatives of xi, 

i=1, 2, 3. The layer under consideration has thickness h 

along the x-axis and is made of two materials, distributed 

in m laminae with thickness λ. It is assumed that λ<<h; 
hence, thickness λ is called the microstructure parameter. 
The n-th lamina (n=1,…,m)  is consisted of two homoge-

neous sub-laminae, with thicknesses 
nn λ′′λ′  ,  dependent on 

x, cf. Fig. 1b. Properties of these two components are de-

termined by: specific heats c′, c″ and heat conduction ten-

sors 
ijij kk ′′′  , , i, j=1, 2, 3. Let λλ ′′≡ν ′′λλ′≡ν′ / ,/ nnnn

 be mate-

rial volume fractions in the n-th lamina. Assuming se-

quence }{ nν′ , n=1,…,m, to be monotone and for every 

n=1,…,m−1 to satisfy condition 1|| 1 <<ν′−ν′+ nn
, the con-

sidered layer can be treated as made of the functionally 

graded material. Because 1=ν ′′+ν′ nn
 the above conditions 

are satisfied also by sequence }{ nν ′′ . Hence, we can ap-

proximate sequences }{ nν′ , }{ nν ′′ , n=1,…,m, by continuous 

functions ν′(·), ν″(·). These functions determine the distri-

bution of material properties along the x-axis. Let us de-

fine the non-homogeneity ratio ν by ν(·)≡[ν′(·)ν″(·)]½. It is 
assumed that functions ν′, ν″ are slowly-varying  

(cf. [2, 5]). A fragment of the layer on the macrolevel is 

shown in Fig. 1a and on the microlevel in Fig. 1b. 
It is assumed that oscillations of the unknown temperature 

field T are small and the intensity of heat sources are ne-

glected. The Fourier’s equation of the heat conduction in 

a transversally graded composite has the form: 

 0)( =+∂∂− TcTk jiji
&  (1) 

In the above equation coefficients kij=kij(x), c=c(x) can be 

highly-oscillating, non-continuous functions in x. In order 

to find solutions to this problem equation (1) can be re-

placed by a system of differential equations with continu-

ous, slowly-varying coefficients, by using the tolerance 

averaging technique, cf. [9, 2, 5]. 

3. MODELLING TECHNIQUE 

In the modelling procedure we use introductory concepts 

of the tolerance averaging technique, e.g.: the 

highly-oscillating function, the averaging operator, the 

slowly-varying function, the fluctuation shape function. 

These concepts were introduced in the book [9] and 

adopted for functionally graded materials in [2-6, 8]. 

Some of them are reminded below. 

The averaging operator for an arbitrary integrable func-

tion f determined in interval [0,h] is defined as: 

 ]2/,2/[   ,)()(
2/

2/

1 λ−λ∈=>< ∫
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λ−

− hxdxxflxf
x
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 (2) 

The fluctuation shape function ϕ is assumed to be con-

tinuous function, which values are of an order O(λ). 
Moreover, it is linear across the thickness of every 

sub-lamina. For the laminate under consideration the fluc-

tuation shape function is assumed in the form: 
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where x  is a centre of the interval ]2/,2/[ λλ− . A diagram 

of this functions is shown in Fig. 2. 
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Fig. 2. Scheme of the fluctuation shape function 

It can be shown that the averaged value of the fluctuation 

shape function ϕ is equal zero, because the 

non-homogeneity ratio ν is the slowly-varying function. 
Now, let us introduce the fundamental assumptions of the 

tolerance averaging technique, cf. [9, 2, 5 ]. 

In the micro-macro decomposition we assume that tem-

perature T=T(x,x,t), x∈[0,h], is decomposed in the form: 

 T(x,x,t)=W(x,x,t)+ϕ(x)Q(x,x,t) (4) 

where W(·,x,t) is called the averaged temperature, Q(·,x,t) 

is called the amplitude fluctuation. Functions W, Q are 

new basic unknowns, being slowly-varying functions in x. 

The second assumption – the tolerance averaging ap-

proximation, stands that for arbitrary slowly-varying 

function F the approximation F+O(Fd)≅F can be applied, 
i.e. terms of an order O(d) are negligibly small in the 

comparing to 1. 
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Using the modelling procedure shown for FGM-type 

composites in [2, 4, 5], which is similar to that applied for 

periodic composites, cf. [9], after some manipulations we 

obtain the model equations of the heat conduction in 

transversally graded laminates. 

4. TOLERANCE MODEL EQUATIONS 

The governing equations of the tolerance model of the 

heat conduction in laminates with functionally graded 

macrostructure can be written in the following form: 
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One of characteristic features of equations (5) is that coef-

ficients in brackets <> are slowly-varying functions in x. 

Underlined terms depend on the microstructure parameter 

λ. Hence, the tolerance model equations (5) describe the 

effect of the microstructure size. 

5. APPLICATIONS TO STATIONARY HEAT 

CONDUCTION 

5.1. Tolerance model 

As an example let us consider the stationary heat conduc-

tion in a transversally graded layer only across laminae, 

i.e. along the x-axis. Hence, the basic unknowns are func-

tions of argument x, i.e. W=W(x), Q=Q(x). Let us denote 

by k′, k″ heat conduction coefficients in sub-laminae, and 

also ∂=∂1. Introducing notations: 
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then calculating from equation (5)2 the amplitude fluctua-

tion Q and substituting into equation (5)1, equations (5) 

can be written in the form: 

 WKKQWK eff ∂−==∂∂ −1~
,0)(

(
 (7) 

Equations (7) have functional coefficients. Because the 

distribution functions of material properties ν′, ν″ are 
slowly-varying and known and the fluctuation shape func-

tion ϕ is also known (cf. (3)), a solution to equation (7)1 
can be calculated by integrating this equation. This solu-

tion can be written in the form: 

 BdxxKAxW eff += ∫ −1)]([)(  (8) 

where A, B are constants determined by boundary condi-

tions. For the layer under consideration with constant pa-

rameters k′, k″ and the fluctuation shape function (3) the 

averaged heat conduction coefficient (6)4 is equal 
1)]()([)( −ν′′−′′+′′′′= xkkkkkxK eff . Denoting  ∫ν′= dxxxP )()(  

the averaged temperature (8) can be written as: 

 BxPkkkkkxAxW +′′′′−′′+′′= −− )]())(()([)( 11  (9) 

Assuming the boundary conditions in the form 

 0)(:;)0(:0 0 ==== hWhxTWx  (10) 

constants A, B are: 
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Combining (9) with (7)2 we obtain a formula for the am-

plitude fluctuation Q. Then substituting the resulting 

equation and solutions (9) into equation (4) the tempera-

ture can be written as: 
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with constants A, B determined by (11). 

On the contrary to the problem considered in [5] we ob-

tain here analytical solutions. 

5.2. Higher order theory 

In order to evaluate obtained results let us consider the 

stationary heat conduction from Subsection 5.1 in the 

framework of the higher order theory. This modelling 

approach was applied in a series of papers and discussed 

and summarized in the paper [1] by Aboudi et al. Follow-

ing this paper the procedure of this theory will be shown. 

Denoting by x′, x″ local coordinates in sub-laminae in the 

n-th lamina (n=1,…,m) temperature distributions in both 

the materials in the n-th lamina are postulated as: 
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where 
210210 ,,,,, TTTTTT ′′′′′′′′′  are unknown constants. For the 

case of m laminae there are 6m unknown parameters be-

ing the basic unknowns of the model. 

Let us denote by k′, k″ heat conduction coefficients in 

sub-laminae and ∂≡∂/∂x (x=x′, x″). In order to calculate 

the above 6m unknowns the following relations are used: 

• the heat conduction equations for the n-th lamina 

 0)]([,0)]([ =′′′′∂′′−∂=′′∂′∂− xTkxTk  (14) 

• the continuity conditions of heat fluxes for the n-th 

lamina 
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• the continuity conditions of the temperature for the 

n-th lamina 

 n
x
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x
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x

n
x nnnn

TTTT λ′′=′′
+
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1 ||,|| 1  (16) 

• the boundary conditions (here assumed as (10)) 

 
)  i.e.(,0|
)0  i.e.(,|

2
1

12
1

0
1

hxxTT
xxTTT

mB
m

T

=λ ′′=′′==′′
=λ′−=′==′  (17) 

where TT and TB are temperatures on the top and the bot-

tom boundary, respectively. 

Substituting equations (13) into equations (14)-(17) we 

obtain a system of 6m algebraic linear equations for 6m 

basic unknowns. 

5.3. Results 

Let us consider linear distributions of materials as  

an example. Hence, material distribution functions are 

assumed in the form: 

1) the first case of the fraction ratios of materials 

 ν′(x)=x/H, ν″(x)=1−ν′(x)=1−x/H (18) 

2) the second case of the fraction ratios of materials  

 ν′(x)=1−x/H, ν″(x)=1−ν′(x)=x/H (19) 

 

 
[T] 

TM: 1a 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
0

0.25

0.5

0.75

1

[×
T
0
] 

[×h] 
[x] 

HT: 1a 

TM: 2a 

HT: 2a 

TM: 1b 

HT: 1b 

TM: 2b 

HT: 2b 

 

Fig. 3. Diagrams of temperature T along the thickness h of the 

layer for x∈[0,h] (TM – the tolerance model, HT – the higher 

order theory; 1 – for formulae (18), 2 – for  formulae (19);  

a – for k″/k′=0.33, b – for k″/k′=0.025) 

Some results of calculations are shown in Fig. 3. In this 

figure there are presented plots of distributions of tem-

perature T across laminae, calculated in the framework of 

the tolerance model (TM) and the higher order theory 

(HT). Calculations are made for the composite consisted 

of m=50 laminae, hence λ/h=0.02. Moreover, it is as-

sumed that ratios of heat conduction coefficients of both 

the materials are equal: k″/k′=0.33 or k″/k′=0.025. 

6. REMARKS 

Analysing results obtained for the example of the station-

ary heat conduction we can observe that: 

• in the framework of the tolerance model we have not 

to solve a system of many algebraic equations in or-

der to obtain a solution to the problem on the con-

trary to the higher order theory; 

• for the problem under consideration the tolerance 

model leads to the explicit solution determined by  

a function; 

• values of the temperature calculated within the toler-

ance model are higher than those from the higher or-

der theory but differences between them are very 

small, cf. Fig. 3. 

More detailed analysis will be presented in the forthcom-

ing paper. 
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