PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Radiacyjnie i sonochemicznie indukowane reakcje rodników polimerowych w roztworach wodnych

Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
PL
Reakcje rodnikowe w wodnych roztworach polimerów mogą być inicjowane różnymi metodami, na przykład poprzez termiczny rozkład inicjatora, ale również poprzez poddanie układu reakcyjnego działaniu promieniowania jonizującego lub ultradźwięków. Takie metody inicjowania stwarzają ciekawe możliwości badawcze i syntetyczne. W pracy opisano oryginalną metodę otrzymywania nanożeli polimerowych w układach zawierających jedynie polimer i wodę na drodze wewnątrz-cząsteczkowego sieciowania wielu rodników generowanych jednocześnie na łańcuchu polimerowym w wyniku krótkiego pulsu promieniowania jonizującego. Metodę tę, jak również jej zmodyfikowaną dwuetapową wersję, przetestowano na wielu polimerach hydrofilowych. W oparciu o badania doświadczalne i symulacje opisano kinetykę i mechanizm sieciowania wenątrzcząsteczkowego, ze szczególnym uwzględnieniem przyczyn niekla-sycznego, dyspersyjnego charakteru kinetyki tej reakcji. Opracowano też nową metodę badania równowagi propagacja-depropagacja w polimeryzacji rodnikowej, którą zastosowano do wykazania istnienia takiej równowagi dla modelowego polielektrolitu w temperaturze pokojowej i wyznaczenia stałych szybkości odpowiednich reakcji elementarnych. Wykazano, na przykładzie poli(kwasu metakrylowego) i chitozanu, że metody badawcze związane z wykorzystaniem promieniowania jonizującego do generowania rodników w wodnych roztworach polimerów mogą być przydatne do badania kinetyki i mechanizmu elementarnych reakcji rodnikowych w makrocząsteczkach polimerów syntetycznych i naturalnych. Dalsza część pracy dotyczyła sonochemii polimerów w roztworach wodnych. Wykazano, że istotną rolę w inicjowaniu reakcji sonochemicznych w takich układach pełnią rodniki OH. Zbadano i podjęto próby interpretacji wpływu wybranych parametrów prowadzenia reakcji sonochemiczych na ich wydajność w modelowym układzie polimerowym. Stwierdzono, że rozkład przestrzenny makrocząsteczek w wodnych roztworach poddanych działaniu ultradźwięków może być niehomogeniczny. Cząsteczki polimerów o częściowo hydrofobowym charakterze wykazują tendencję do skupiania się przy powierzchni oscylujących pęcherzyków kawitacyjnych, przez co ich lokalne stężenie w tej strefie, będącej równocześnie strefą reakcji z generowanymi w pęcherzykach rodnikami OH, może być o dwa rzędy wielkości wyższe niż ich średnie stężenie w roztworze. Ponadto wykazano, że polimery poddawane działaniu ultradźwięków mogą ulegać nie tylko degradacji, ale i sieciowaniu, a odpowiedni dobór substratów i warunków reakcji może prowadzić do sytuacji, w których sieciowanie jest procesem dominującym i obserwuje się wzrost średniego ciężaru cząsteczkowego polimeru. Udowodniono również, że jest możliwe otrzymywanie makroskopowych, trwałych hydrożeli poprzez poddawanie działaniu ultradźwięków wodnych roztworów monomerów dwu-funkcyjnych. Metoda ta jest bardzo prosta, a czas trwania reakcji w optymalnych warunkach jest nie dłuższy od jednej minuty.
EN
Free-radical reactions in aqueous solutions of polymers can be initiated in various ways, for instance by thermal decomposition of an initiator, but also by subjecting the substrate system to the action of ionizing radiation or ultrasound. The two latter methods are of considerable interest both for basic studies on reaction mechanisms and for synthetic applications. In this work an original method of synthesizing polymeric nanogels has been described, where a system consisting only of a polymer and water is treated with a short pulse of ionizing radiation, causing instantaneous formation of many radicals at each chain and their subsequent intramolecular recombination. This one-step method, along with its two-step version, has been successfully tested on a number of hydrophilic polymers. Based on experimental evidence and Monte Carlo simulations, kinetics and mechanism of intermolecular cross-linking have been described in some detail, with particular focus on explaining the reasons for non-classical, dispersive character of the kinetics. A new method for studying the propagation-depropagation equilibrium in free radical polymerization has been proposed and applied for detecting such an equilibrium in an exemplary polyelectrolyte at room temperature and for determining rate constants of the elementary reactions involved. It has been demonstrated, on the examples of poly(methacrylic acid) and chitosan, that the research methods related to radiation-induced generation of free radicals can be useful for studying kinetics and mechanism of elementary radical reactions in both synthetic and natural polymers in aqueous solutions. Second part of this work concerned sonochemistry of polymers in aqueous solutions. It has been shown that OH radicals may play an important role in initializing polymer reactions in such systems. An attempt has been made to assess and explain the influence of selected process parameters on the efficiency of sonochemical reactions in a model polymer system. It has been found that the spatial distribution of partially hydrophobic macromolecules in aqueous solutions subjected to the action of ultrasound is non-homogeneous. Such molecules tend to accumulate at the surface of oscillating cavitation bubbles, and therefore their local concentration at the immediate vicinity of the bubbles, i.e., in the reaction zone with OH radicals generated inside the bubbles, can be higher than their average solution concentration even by two orders of magnitude. It has been demonstrated that polymers can be not only degraded, but also cross-linked by the action of ultrasound. By appropriate selection of polymeric substrate and reaction conditions one can reach a situation where cross-linking dominates over degradation and an increase in the average molecular weight of the polymer is observed. It has been proved as well that one can synthesize permanent, macroscopic hydrogels by sonication of bifunctional monomers in aqueous solutions. The method is very simple, and the reaction time under optimum conditions is less than one minute.
Słowa kluczowe
Rocznik
Tom
Strony
3--166
Opis fizyczny
Bibliogr. 447 poz., tab., wykr.
Twórcy
autor
autor
  • Politechnika Łódzka. Międzyresortowy Instytut techniki Radiacyjnej
Bibliografia
  • 1. Matyjaszewski K. i Spanswick J. (2005); Controlled/living radical polymerization; Materials Today 3, 26-33.
  • 2. Matyjaszewski K. (1998); Overview: Fundamentals of controlled/living radical polymerization; ACS Symposium Series 685, 2-30.
  • 3. Matyjaszewski K. i Davis T.P. (2002); Handbook of Radical Polymerization; Wiley-Interscience, New York.
  • 4. von Recum A.F. (red.) (1999); Handbook of Biomaterials Evaluation; Taylor and Francis, Philadelphia.
  • 5. Słomkowski S. (1998); Polimery Biomedyczne, w: Chemia Polimerow, red.: Florjańczyk Z. i Penczek S., Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, Tom 3, ss. 159-178.
  • 6. Pękala W. (1971); Polimeryzacja Radiacyjna i Działanie Promieniowania Jonizującego Na Polimery, w: Technika Radiacyjna, red.: Kroh J., WNT, Warszawa, ss. 61-170.
  • 7. Dole M. (1972); The Radiation Chemistry of Macro molecules; Academic Press, New York.
  • 8. Ivanov V.S. (1992); Radiation Chemistry of Polymers; VSP, Utrecht.
  • 9. Singh A. i Silverman J. (red.) (1992); Radiation Processing of Polymers; Carl Hanser, München.
  • 10. Woods R.J. i Pikaev A.K. (1993); Applied Radiation Chemistry: Radiation Processing; Wiley-Interscience, New York.
  • 11. Mehnert R. (1995); Electron beams in research and technology; Nucl. Instr. Meth. B 105, 348-358.
  • 12. Clough R. i Shalaby S. (red.) (1996); Irradiation of Polymers: Fundamentals and Technological Applications; ACS Books, Washington, DC.
  • 13. Cleland M.R., Parks L.A. i Cheng S. (2003); Applications for radiation processing of materials; Nucl. Instr. Meth. B 208, 66-73.
  • 14. Rosiak J., Rucinska-Rybus A. i Pekala W. (1988); patent; Method of manufacturing hydrogel dressings; US 4871490.
  • 15. Rosiak J,M. (1991); Hydrogel Dressings HDR, w: Radiation Effects on Polymers, ACS Symposium Series 475, red.: Clough R.C. i Shalaby S.W., American Chemical Society, Washington, ss. 271-299.
  • 16. Rosiak J.M. (1994); Radiation formation of hydrogels for drug delivery; J. Controlled Release 31, 9-19.
  • 17. Rosiak J.M., Ulanski P., Pajewski L.A., Yoshii F. i Makuuchi K. (1995); Radiation formation of hydrogels for biomedical purposes - some remarks and comments; Radiat. Phys. Chem. 46, 161-168.
  • 18. Rosiak J.M. i Ulanski P. (1999); Synthesis of hydrogels by irradiation of polymers in aqueous solution; Radiat. Phys. Chem. 55, 139-151.
  • 19. Berkowitch J., Charlesby A. i Desreux V. (1957); Radiation effects on aqueous solutions of polyvinyl alcohol; J. Polym. Sci. 25, 490-492.
  • 20. Alexander P. i Charlesby A. (1957); Effect of X-rays and y-rays on the synthetic polymers in aqueous solution; J. Polym. Sci. 23, 355-375.
  • 21. Charlesby A. (1960); Atomic Radiation and Polymers; Pergamon Press, Oxford.
  • 22. King P.A. i Ward J.A. (1970); Radiation chemistry of aqueous poly(ethylene oxide) solutions. I; J. Polym. Sci. PartA-1 8, 253-262.
  • 23. Cima L.G. i Lopina S.T. (1995); Network structures of radiation-cross-linked star polymer gels; Macromolecules 28, 6787-6794.
  • 24. Sakurada I. i Ikada Y. (1966); Effects of gamma radiation on polymer in solution. (IX) A turbidimetric study of poly (vinyl alcohol) irradiated below critical concentration for gel-formation; Bull. Inst. Chem. Res. Kyoto Univ. 44, 66-73.
  • 25. Grollmann U. i Schnabel W. (1980); On the kinetics of polymer degradation in solution, 9. Pulse radiolysis of poly (ethylene oxide); Makromol. Chem. 181, 1215-1226.
  • 26. Denk O. i Schnabel W. (1982); Über die oxidative Hauptkettenspaltung einiger Nukleinsäuren - Pulsradiolytische Untersuchungen; Z. Naturforsch. 37c, 405-412.
  • 27. Schnabel W., Denk O., Grollmann U., Raap LA. i Washino K. (1983); On the reactions of macroradicals in solution. A pulse radiolysis study; Radial. Phys. Chem. 21, 225-231.
  • 28. Raap I.A. i Grollmann U. (1983); The stochastic kinetics of intramolecular reactions in linear polymers; Macromol. Chem. 184, 123-134.
  • 29. Wang B., Mukataka S., Kodama M. i Kokufuta E. (1997); Viscometric and light scattering studies on microgel formation by gamma-ray irradiation to aqueous oxygen-free solutions of poly(vinyl alcohol); Langmuir 13, 6108-6114.
  • 30. Ulanski P., Bothe E., Rosiak J.M. i von Sonntag C. (1994); OH-Radical-induced crosslinking and strand breakage of poly(vinyl alcohol) in aqueous solution in the absence and presence of oxygen. A pulse radiolysis and product study; Makromol. Chem. 195, 1443-1461.
  • 31. Ulanski P., Zainuddin i Rosiak J.M. (1995); Pulse radiolysis of poly(ethylene oxide) in aqueous solution. I. Formation of macroradicals; Radiat. Phys. Chem. 46,913-916.
  • 32. Ulanski P., Zainuddin i Rosiak J.M. (1995); Pulse radiolysis of poly(ethylene oxide) in aqueous solution. II. Decay of macroradicals; Radiat. Phys. Chem. 46, 917-920.
  • 33. Frank M. i Burchard W. (1991); Microgels by intramolecular crosslinking of poly(allylaniline) single chains; Makromol. Chem. , Rapid Commun. 12, 645-652.
  • 34. Brasch U. i Burchard W. (1996); Preparation and solution properties of microhydrogels from poly(vinyl alcohol); Macromol. Chem. Phys. 197, 223-235.
  • 35. Kuhn W. i Majer H. (1956); Die Selbstvernetzung von Fadenmolekiilen; Makromol. Chem. 18, 239-253.
  • 36. Kuhn W, i Balmer G. (1962); Crosslinking of single linear macromolecules; J. Polym. Sci. 57, 311-319.
  • 37. Braun D. i Walter E. (1976); Intra- und intermolekulare Vernetzung von Polyvinylalkohol; Colloid Polym. Sci. 254, 396-399.
  • 38. Aharoni S.M. (1977); Intramolecular crosslinking; Angew. Makromol. Chemie 62, 115-133.
  • 39. Arbogast W., Horvath A. i Vollmert B. (1980); Darstellung und [h]-M-Beziehung von Mikrogelen aus Polyvinylalkohol; Makromol. Chem. 181, 1513-1524.
  • 40. Gebben B., van der Berg H.W.A., Bargeman D. i Smolders C.A. (1985); Intramolecular crosslinking of poly(vinyl alcohol); Polymer 26, 1737-1740.
  • 41. Ulanski P., Janik I., Kadłubowski S., Kozicki M., Kujawa P., Pietrzak M, Stasica P. i Rosiak J.M. (2002); Polymeric biomaterials synthesized by radiation technique - current studies at IARC, Poland; Polym. Adv. Technol. 13, 951-959.
  • 42. Pielka S., Zywicka B., Rosiak J., Henke A., Ulanski P., Paluch D., Szymonowicz M., Solski L. i Staniszewska K. (2004); Badania miejscowej reakcji tkanki mięśniowej po iniekcji preparatu poliwinylopirolidonu.; Polim. Med. 34, 9-15.
  • 43. Pielka S., Zywicka B., Rosiak J., Henke A., Ulanski P., Paluch D., Szymonowicz M., Solski L. i Staniszewska K. (2004); Odczyn tkankowy po iniekcji preparatu poliwinylopirolidonu (PVP) do stawu kolanowego. Badania doświadczalne.; Polim. Med. 34, 3-8.
  • 44. Rosiak J.M., Ulanski P. i Czechowska-Biskup R. (2005); patent; Preparat dietetyczny wspomagający odchudzanie; Polska P-378313.
  • 45. Czechowska-Biskup R., Ulanski P., Olejnik A.K., Nowicka G., Panczenko-Kresowska B. i Rosiak J.M. (2007); Diet supplement based on radiation-modified chitosan and radiation-synthesized polyvinylpyrrolidone microgels. Influence on the liver weight in rats fed fat- and cholesterol-rich diet; J. Appl. Polym. Sci. 105, 169-176.
  • 46. Blatz P.J. i Tobolsky A.V. (1945); Note on the kinetics of systems manifesting simultaneous polymerization-depolymerization phenomena; J. Phys. Chem. 49, 77-80.
  • 47. Dainton F.S. i Ivin K.J. (1948); Reversibility of the propagation reaction in polymerization process and its manifestation in the phenomenon of a "ceiling temperature"; Nature 162, 705-707.
  • 48. Dainton F.S. i Ivin K.J. (1958); Some thermodynamic and kinetic aspects of addition polymerization; Q. Rev. Chem. Soc. London 12, 61-91.
  • 49. Ivin K.J. (1955); The equilibrium between methyl methacrylate and its polymer; Trans. Faraday Soc. 51, 1273-1279.
  • 50. Ueda M., Suzuki T., Takahashi M., Li Z.B., Koyama K. i Pittman C.U. (1986); Radical copolymerization of styrene with alpha-methylene-delta-valerolactone: role of depropagation in the mechanism; Macromolecules 19, 558-565.
  • 51. Duda A. i Penczek S. (1990); Thermodynamics of L-lactide polymerization. Equilibrium monomer concentration; Macromolecules 23, 1636-1639.
  • 52. Liang L. i Shenkang Y. (1993); Anionic equilibrium polymerization of alpha-methylstyrene initiated by butyllithium/dimethoxyethane and glyme-1; Makromol. Chem. 194,581-600.
  • 53. Witzke D.R., Narayan R. i Kolstad J.J. (1997); Reversible kinetics and thermodynamics of the homopolymerization of L-lactide with 2-ethylhexanoic acid tin(II) salt; Macromolecules 30, 7075-7085.
  • 54. Hutchinson R.A., Paquet D.A., Beuermann S. i McMinn J.H. (1998); Investigation of methacrylate free-radical depropagation kinetics by pulsed-laser polymerization; Ind. Eng. Chem. Res. 37, 3567-3574.
  • 55. Martinet F. i Guillot J. (1999); Copolymerization with depropagation: prediction of kinetics and properties of alpha-methylstyrene-methyl methacrylate copolymers. II. Bulk copolymerization; J. Appl. Polym. Sci. 72, 1611-1625.
  • 56. Nishida H., Yamashita M., Endo T. i Tokiwa Y. (2000); Equilibrium polymerization behavior of l,4-dioxan-2-one in bulk; Macromolecules 33, 6982-6986.
  • 57. Zhao D. i Moore J.S. (2002); Reversible polymerization driven by folding; J. Am. Chem. Soc. 124, 9996-9997.
  • 58. Tanaka H. i Niwa M. (2005); Exceptional chiroptical behavior near ceiling temperature in free radical polymerization of menthyl 2-acetamidoacrylates; Polymer 46, 4635-4639.
  • 59. Szablan Z., Stenzel M.H., Davis T.P., Earner L. i Barner-Kowollik C. (2005); Depropagation kinetics of sterically demanding monomers: A pulsed laser size exclusion chromatography study; Macromolecules 38, 5944-5954.
  • 60. Tobolsky A.V. i Eisenberg A. (1960); A general treatment of equilibrium polymerization; J. Am. Chem. Soc. 82, 289-293.
  • 61. Leonard J. (1969); Thermodynamics of equilibrium polymerization in solution. Effect of polymer concentration on the equilibrium monomer concentration; Macromolecules 2, 661-666.
  • 62. Meakin P. (1983); Effects of depropagation on free radical copolymeirzation kinetics; Macromolecules 16, 1661-1669.
  • 63. Dudowicz J., Freed K.F. i Douglas J.F. (2003); Lattice model of equilibrium polymerization. IV. Influence of activation, chemical initiation, chain scission and fusion, and chain stiffness on polymerization and phase separation; J. Chem. Phys. 119, 12645-12666.
  • 64. Strier U. (2003); Irreversible thermodynamics of reversible polymerization reactions; J. Chem. Phys. 119, 7591-7598.
  • 65. Ballone P. i Jones R.O. (2002); Equilibrium polymerization of cyclic carbonate oligomers. II. Role of multiple active sites; J. Chem. Phys. 116, 7724-7732.
  • 66. Greer S.C. (1998); Physical chemistry of equilibrium polymerization; J. Phys. Chem. 5102,5413-5422.
  • 67. Greer S.C. (2002); Reversible polymerizations and aggregations; Annu. Rev. Phys. Chem. 53, 173-200.
  • 68. Szymański S. (1995); Termodynamika Polimeryzacji, w: Chemia Polimerow, Wyd. 1, red.: Florjańczyk Z. i Penczek S., Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, Tom 1, ss. 121-142.
  • 69. Odian G. (2004); Principles of Polymerization; Wyd. 4, Wiley-Interscience, Hoboken, NJ.
  • 70. Blauer G. (1960); Polymerization of methacrylic acid at pH 4 to 11; Trans. Faraday Soc. 56, 606-612.
  • 71. Völker T. (1961); Lichtabbau von Polymethacrylverbindungen in wäßriger Lösung; Makromol. Chem. 44-46, 107-122.
  • 72. Görlich W. i Schnabel W. (1973); Investigations on the influence of charge density on the mutual deactivation of polyion-macroradicals. II; Eur. Polym. J. 9, 1298-1296.
  • 73. Behar D. i Rabani J. (1988); Pulse radiolysis of poly(styrenesulfonate) in aqueous solutions; J. Phys. Chem. 92, 5288-5292.
  • 74. Gilbert B.C., Smith J.R.L., Milne C.E., Whitwood A.C. i Taylor P. (1994); Kinetic and structural EPR studies of radical polymerisation. Monomer, dimer, trimer and mid-chain radicals formed via the initiation of polymerisation of acrylic acid and related compounds with electrophilic radicals (OH, SO4" and C12"); J. Chem. Soc. Perkin Trans. 2 1759-1769.
  • 75. Ulanski P. i Rosiak J.M. (1994); Pulse radiolysis of poly(acrylic acid) in deoxygenated aqueous solution. Reaction of hydroxyl radicals and absorption spectra of intermediate products; J. Radioanalyt. Nucl. Chem. (Letters) 186, 315-324.
  • 76. Ulanski P., Bothe E., Hildenbrand K., Rosiak J.M. i von Sonntag C. (1995); Radiolysis of poly(acrylic acid) in aqueous solution; Radiat. Phys. Chem. 46, 909-912.
  • 77. Ulanski P., Bothe E., Rosiak J.M. i von Sonntag C. (1996); Radiolysis of the poly(acrylic acid) model 2,4-dimethylglutaric acid: a pulse radiolysis and product study; J. Chem. Soc. Perkin Trans. 2 5-12.
  • 78. Ulanski P., Bothe E., Hildenbrand K., Rosiak J.M. i von Sonntag C. (1996); Hydroxyl-radical-induced reactions of poly(acrylic acid): a pulse radiolysis, EPR and product study. Part I. Deoxygenated aqueous solution; J. Chem. Soc. Perkin Trans. 2 1996, 13-22.
  • 79. Ulanski P., Bothe E., Hildenbrand K., Rosiak J.M. i von Sonntag C. (1996); Hydroxyl-radical-induced reactions of poly(acrylic acid); a pulse radiolysis, EPR and product study. Part II. Oxygenated solution; J. Chem. Soc. Perkin Trans. 2 1996, 23-28.
  • 80. Ulanski P., Bothe E., Hildenbrand K., von Sonntag C. i Rosiak J.M. (1997); The influence of repulsive electrostatic forces on the lifetimes of poly(acrylic acid) radicals in aqueous solution; Nukleonika 42,425-436.
  • 81. Rosiak J., Olejniczak J. i Pękala W. (1990); Fast reactions of irradiated polymers. I. Crosslinking and degradation of polyvinylpyrrolidone; Radiat. Phys. Chem. 36, 747-755.
  • 82. Rosiak J. (1990); Hydrogel dressings HDR; ACS Polym. Prepr. Div. Polym. Chem. 31, 361-362.
  • 83. Ulanski P. i Rosiak J.M. (1999); The use of radiation technique in the synthesis of polymeric nanogels; Nucl. Instr. Meth. B 151, 356-360.
  • 84. Henke A., Kadlubowski S., Ulanski P., Rosiak J.M. i Arndt K.-F. (2005); Radiation-induced cross-linking of polyvinylpyrrolidone-poly(acrylic acid) complexes; Nucl. Instr. Meth. B 236, 391-398.
  • 85. Burczak K., Lubis R., Rosiak J. i Kroh J. (1991); Radiation Transformations of Poly Vinyl Alcohol in Aqueous Solution, w: Proceedings of the 7th Tihany Symposium on Radiation Chemistry, red.: Dobo J., Nyikos L. i Schiller R., Budapest, Akademiai Kiado, ss. 355-360.
  • 86. von Sonntag C., Bothe E., Ulanski P. i Adhikary A. (1999); Radical transfer reactions in polymers; Radial. Phys. Chem. 55, 599-603.
  • 87. Zainuddin (1993); Radiation-Induced Crosslinking and Degradation of Poly(Ethylene Oxide) in Aqueous Solution, praca magisterska, Politechnika Łódzka.
  • 88. Jeszka K., Kadlubowski S. i Ulanski P. (2006); Monte Carlo simulations of nanogels formation by intramolecular recombination of radicals on polymer chain. Dispersive kinetics controlled by chain dynamics; Macromolecules 39, 857-870.
  • 89. Janik I., Ulanski P. i Rosiak J.M. (1999); Pulse radiolysis of poly(vinyl methyl ether) in aqueous solution. Formation and structure of primary radicals; Nucl. Instr.Meth.B 151, 318-323.
  • 90. Janik L, Ulanski P., Rosiak J.M. i von Sonntag C. (2000); Hydroxyl-radical-induced reactions of the poly(vinyl methyl ether) model 2,4-dimethoxypentane in the absence and presence of dioxygen: a pulse radiolysis and product study; J. Chem Soc. Perkin Trans. 2 2000, 2034-2040.
  • 91. Janik L, Ulanski P., Hildenbrand K., Rosiak J.M. i von Sonntag C. (2000); Hydroxyl-radical-induced reactions of poly(vinyl methyl ether): a pulse radiolysis, EPR and product study in deoxygenated and oxygenated aqueous solutions; J. Chem. Soc. Perkin Trans. 2 2000, 2041-2048.
  • 92. Janik L, Kasprzak E., Al-Zier A. i Rosiak J.M. (2003); Radiation crosslinking and scission parameters for poly(vinyl methyl ether) in aqueous solution; Nucl. Instr. Meth. B 208, 374-379.
  • 93. Schmidt T., Janik L, Kadlubowski S., Ulanski P., Rosiak J.M., Reichelt R. i Arndt K.-F. (2005); Pulsed electron beam irradiation of dilute aqueous poly(vinyl methyl ether) solutions; Polymer 46, 9908-9918.
  • 94. Ulanski P., Kadlubowski S. i Rosiak J.M. (2002); Synthesis of poly(acrylic acid) nanogels by preparative pulse radiolysis; Radial. Phys. Chem. 63, 533-537.
  • 95. Kadlubowski S., Grobelny J., Olejniczak W., Cichomski M. i Ulanski P. (2003); Pulses of fast electrons as a tool to synthesize poly(acrylic acid) nanogels. Intramolecular cross-linking of linear polymer chains in additive-free aqueous solution; Macromolecules 36, 2484-2492.
  • 96. Ulanski P., Bothe E. i von Sonntag C. (1999); Some aspects of the radiolysis of poly(methacrylic acid) in oxygenfree aqueous solution; Radial. Phys. Chem. 56, 467-474.
  • 97. Ulanski P., Bothe E. i von Sonntag C. (1999); OH radical induced depolymerization of poly(methacrylic acid); Nucl. Instr. Meth. B 151, 350-355.
  • 98. Ulanski P., Bothe E., Hildenbrand K. i von Sonntag C. (2000); Free-radical-induced chain breakage and depolymerization of poly(methacrylic acid). Equilibrium polymerization in aqueous solution at room temperature; Chem. Eur. J. 6, 3922-3934.
  • 99. Kujawa P. i Rosiak J.M. (2000); Pulse radiolysis of 2-[(methacry-loyloxy)ethyl]trimethylammonium chloride in aqueous solution; Radiat, Phys. Chem. 57, 559-563.
  • 100. Zarucka N. (2006); Otrzymywanie i Badanie Właściwości Nanożeli Polimerowych, praca magisterska, Politechnika Łódzka.
  • 101. Muzzarelli R.A.A. (1977); Chitin; Wyd. 1, Pergamon Press, Oxford.
  • 102. Olsen R., Schwartzmiller D., Weppner W. i Winandy R. (1989); Biomedical Applications of Chitin and Its Derivatives, w: Chitin and Chitosan, red.: Skjak-Braek G., Anthonsen T. i Sandford P., Elsevier, London, ss. 813-828.
  • 103. Goosen M.F.A. (red.) (1997); Applications of Chitin and Chitosan; Technomic Publishing Co., Lancaster.
  • 104. Paul W. i Sharma C.P. (2000); Chitosan, a drug carrier for the 21st century: a review; STP Pharma Sci. 10, 5-22.
  • 105. Sciutto A.M. i Colombo P. (1995); Lipid-lowering effect of chitosan dietary integrator and hypocaloric diet in obese subjects; Acta Toxicol. Ther. 16, 215-229.
  • 106. Pittler M.H., Abbot N.C., Harkness E.F. i Ernst E. (1999); Randomized, double-blind trial of chitosan for body weight reduction; Eur. J. Clin. Nutr. 53, 379-381.
  • 107. Zahorska-Markiewicz B., Krotkiewski M., Olszanecka-Gliniarowicz M. I Zurakowski A. (2002); Effect of chitosan in complex management of obesity; Pol. Merkuriusz Lek. 13, 129-132.
  • 108. Gades M.D. i Stern J.S. (2005); Chitosan supplementation and fat absorption in men and women; J. Am. Diet. Assoc. 105, 12-11.
  • 109. Inui H., Tsujikubo M. i Hirano S. (1995); Low molecular weight chitosan stimulation of mitogenic response to platelet-derived growth factor in vascular smooth muscle cells; Biosci. Biotech. Biochem. 59, 2111-2114.
  • 110. Ikeda I., Sugano M., Yoshida K., Sasaki E., Iwamoto Y. i Hatano K. (1993); Effects of chitosan hydrolysates in lipid absorption and on serum and liver lipid concentration in rats; J. Agric. Food Chem. 41,431-435.
  • 111. Muzzarelli R.A.A., Trebojevich M. i Cosani A. (1996); Unspecific Activities of Lipases and Amylases on Chitosans, w: Chitin Enzymology, red.: Muzzarelli R.A.A., Atec Edizioni, Italy, Tom 2, ss. 69-81.
  • 112. Torzsas T.L., Kendall C.W.C., Sugano M., Iwamoto Y. i Rao A.V. (1996); The influence of high and low molecular weight chitosan on colonic cell proliferation and aberrant crypt foci development in CF1 mice; Food Chem. Technol. 34, 73-77.
  • 113. Meler J., Pluta J., Ulanski P. i Krotkiewski M. (2003); Fat-Binding Capacity of Non-Modified and Modified Chitosans, w: Progress on Chemistry and Application of Chitin and Its Derivatives, Vol. IX, red.: Struszczyk H., Polish Chitin Society, Lodz, ss. 129-136.
  • 114. Czechowska-Biskup R., Rokita B., Ulanski P. i Rosiak J.M. (2005); Radiation-induced and sonochemical degradation of chitosan as a way to increase its fat-binding capacity; Nucl. Instr. Meth. B 236, 383-390.
  • 115. Kume T. i Takehisa M. (1982); Effect of Gamma-Irradiation on Chitosan, w: Proc. 2nd Int. Conf. on Chitin and Chitosan, Sapporo, Japan, ss. 66-70.
  • 116. Ershov E.G., Isakova O.V., Rogozhin S.V., Gamzazade A.I. i Leonova E.U. (1987); Radiation-chemical transformations of chitosan; Dokl. Akad. Nauk SSSR 295,1152-1156.
  • 117. Rosiak J.M., Ulanski P., Kucharska M., Dutkiewicz J. i Judkiewicz L. (1992); Radiation sterilization of chitosan sealant for vascular prostheses; J. Radioanal. Nucl. Chem. (Articles) 159, 87-96.
  • 118. Ulanski P. i Rosiak J.M. (1994); Radiation-Induced Degradation of Chitosan, w: Chitin World, red.: Karnicki Z.S., Brzeski M.M., Bykowski PJ. i Wojtasz-Pajak A., Wirtschaftsverlag NW, Bremerhaven, ss. 575-582.
  • 119. Matsuhashi S. i Kume T. (1997); Enhancement of antimicrobial activity of chitosan by irradiation; J. Sci. FoodAgric. 73, 237-241.
  • 120. Muzzarelli R.A.A. i Tubertini O. (1972); Radiation-resistance of chitin and chitosan applied in chromatography of radioactive solutions; J. Radioanal. Chem. 12,431-440.
  • 121. Richards W.T. i Loomis A.L. (1927); The chemical effects of high frequency sound waves I. A preliminary survey; J. Am. Chem. Soc. 49, 3086-3100.
  • 122. Szalay S. (1933); Die Zerstoerung von hochpolymeren Molekuelen mittels Ultraschallwellen; Z. physik. Chem. 164, 234-240.
  • 123. Suslick K.S. (1988); Homogeneous Sonochemistry, w: Ultrasound. Its Chemical, Physical, and Biological Effects, red.: Suslick K.S., VCH Publishers, Weinheim, ss. 123-164.
  • 124. Mason T.J. i Lorimer J.P. (1988); Sonochemistry: Theory and Uses of Ultrasound in Chemistry; Ellis Horwood, Chichester.
  • 125. Suslick K.S. (1990); Sonochemistry; Science 247, 1439-1445.
  • 126. Price G.J. (red.) (1992); Current Trends in Sonochemistry; Royal Society of Chemistry, Cambridge.
  • 127. Mason T.J. i Lorimer J.P. (2002); Applied Sonochemistry; Wiley-VCH, Weinheim.
  • 128. Mason T.J. i Luche J.L. (1997); Ultrasound As a New Tool for Synthetic Chemists, w: Chemistry Under Extreme or Non-Classical Conditions, red.: van Eldik R. i Hubbard C.D., New York/Heidelberg, ss. 317-380.
  • 129. Price G.J. (1997); Applications of High Intensity Ultrasound in Polymer Chemistry, w: Chemistry Under Extreme or Non-Classical Conditions, red.: van Eldik R. i Hubbard C.D., Wiley/Spektrum Akademischer Verlag, New York/Heidelberg, ss. 381-428.
  • 130. Flint E.B. i Suslick K.S. (1991); The Temperature of Cavitation; Science 253, 1397-1399.
  • 131. Luche J.-L. i Cintas P. (1999); Can Sonication Modify the Regie- and Stereoselectiveness of Organic Reactions ?, w: Advances in Sonochemistry, red.: Mason T.J., JAI Press, Stamford, CT, Tom 5, ss. 147-174.
  • 132. Ando T. i Kimura T. (1991); Ultrasonic Organic Synthesis Involving Non-Metal Solids, w: Advances in Sonochemistry, red.: Mason T.J., JAI Press, London, Tom2, ss. 211-251.
  • 133. Bremner D.H. (1994); Recent advances in organic synthesis utilizing ultrasound; Ultrason. Sonochem. 2, 119-124.
  • 134. Li B., Xie Y., Huang J., Liu Y. i Qian Y. (2001); A novel method for the preparation of III-V semiconductors: sonochemical synthesis of InP nanocrystals; Ultrason. Sonochem. 8, 331-334.
  • 135. Kim W. i Saito F. (2001); Sonochemical synthesis of hydroxyapatite from H3PO4 solution with Ca(OH)2; Ultrason. Sonochem. 8, 85-88.
  • 136. Gedanken A. (2004); Using sonochemistry for the fabrication of nanomaterials; Ultrason. Sonochem. 11, 47-55.
  • 137. Basedow A.M. i Ebert K.H. (1977); Ultrasonic Degradation of Polymers in Solution; Adv. Polym. Sci. 22, 83-148.
  • 138. Walton D.J. i Phull S.S. (1996); Sonoelectrochemistry, w: Advances in Sonochemistry, Vol. 4, red.: Mason.T., JAI Press, London, ss. 206-284.
  • 139. Dahi E. (1976); Physicochemical aspects of desinfection of water by means of ultrasound and ozone; Water Res. 10, 677-684.
  • 140. Chen J.R., Xu X.W., Lee A.S. i Yen T.F. (1990); A feasibility study of dechlorination of chloroform in water by ultrasound in the presence of hydrogen peroxide; Environ. Technol. 11, 829-836.
  • 141. Hoffmann M.R., Hua I. i Hochemer R. (1996); Application of ultrasonic irradiation for the degradation of chemical contaminants in water; Ultrason. Sonochem. 3, S163-S172.
  • 142. Tauber A., d'Alessandro N., Mark G., Schuchmann H.-P. i von Sonntag C. (1999); Sonolysis of Water Pollutants: Thermal Breakdown Vs. Liquid Phase OH Radical Reactions. A Viable Technology for Pollution Abatement?, w: Ultrasound in Environmental Engineering, red.: Tiehm A. i Neis U., GFEU an der TUHH, Hamburg Harburg, Tom 25, ss. 123-137.
  • 143. Rumack C., Wilson S., Charboneau J.W., i Johnson J.-A. (red.) (2004); Diagnostic Ultrasound; Wyd. 3, Mosby Elsevier,
  • 144. Amso N.N. (1994); Applications of therapeutic ultrasound in medicine; Ultrason. Sonochem. 1, 69-71.
  • 145. Umemura S., Yumita N., Nishigaki R. i Umemura K. (1990); Mechanism of cell damage by ultrasound in combination with hematoporphyrin; Jpn. J. Cancer Res. 81, 962-966.
  • 146. Yumita N., Nishigaki R., Umemura K. i Umemura S. (1990); Synergistic effect of ultrasound and hematoporphyrin in Sarcoma 180; Jpn. J. Cancer Res. 81, 304-308.
  • 147. Umemura S., Yumita N. i Nishigaki R. (1993); Enhancement of ultrasonically induced cell damage by a gallium-porphyrin complex, ATX-70; Jpn. J. Cancer Res. 84, 582-588.
  • 148. Umemura S., Kawabata K., Sasaki K., Yumita N., Umemura K. i Nishigaki R. (1996); Recent advances on sonodynamic approach to cancer therapy; Ultrason. Sonochem. 3, 187-191.
  • 149. Yumita N., Sasaki K., Umemura S. i Nishigaki R. (1996); Sonodynamically induced antitumor effect of a galium-porphyrin complex, ATX-70; Jpn. J. Cancer Res. 87, 310-316.
  • 150. Umemura S., Yumita N., Umemura K. i Nishigaki R. (1999); Sonodynamically induced effect of rose bengal on isolated sarcoma 180 cells; Cancer Chemother. Pharmacol. 43, 389-393.
  • 151. Misik V. i Riesz P. (1996); Peroxyl radical formation in solutions of N,N-dimethylformamide, N-methylformamide, and dimethylsulfoxide by ultrasound: implications for sonosensitized cell killing; Free Rad. Biol. Med. 20, 129-138.
  • 152. Miyoshi N., Misik V. i Riesz P. (2000); Evidence against singlet oxygen formation by sonolysis of aqueous oxygen-saturated solutions of Hematoporfirin and Rose Bengal. The mechanism of sonodynamic theraphy; Ultrason. Sonochem. 7, 121-124.
  • 153. Taleyarkhan R.P., West C.D., Cho J.S., Lahey Jr R.T., Nigmatulin R.I. i Block R.C. (2002); Evidence for nuclear emissions during acoustic cavitation; Science 295, 1868-1873.
  • 154. Taleyarkhan R.P., Cho J.S., West C.D., Lahey Jr R.T., Nigmatulin R.I. i Block R.C. (2004); Additional evidence of nuclear emissions during acoustic cavitation; Phys. Rev. E 69, 036109-1-036109-11.
  • 155. Saltmarsh M.J., Shapira D., Taleyarkhan R.P., Block R.C., West C.D. i Lahey R.T. (2002); Questions regarding nuclear emissions in cavitation experiments; Science 297, 1603-1603.
  • 156. Henglein A. (1987); Sonochemistry: historical developments and modern aspects; Ultrasonics 25, 6-16.
  • 157. Tauber A. (1998); Mechanistische Untersuchungen Zur Sonolyse Organischer Verbindungen in Wa'Briger Lo'sung, praca doktorska, Ruhr-Universitat, Bochum.
  • 158. von Sonntag C., Mark G., Tauber A. i Schuchmann H.-P. (1999); OH Radical Formation and Dosimetry in the Sonolysis of Aqueous Solutions, w: Advances in Sonochemistry, Vol. 5, red.: Mason T.J., JAI Press Inc., Stamford, CT, ss. 109-145.
  • 159. Suslick K.S., Hammerton D.A. i Cline R.E.J. (1986); The sonochemical hot spot; J. Am. Chem. Soc. 108, 5641-5642.
  • 160. Sehgal C., Steer R.P., Sutherland R.G. i Verrall R.E. (1979); Sonolumiescence of argon saturated alkali metal salt solutions as a probe of acoustic cavitation; J. Chem. Phys. 70, 2242-2248.
  • 161. Chen R.H., Chang J.R. i Shyur J.S. (1997); Effects of ultrasonic conditions and storage in acidic solutions on changes in molecular weight and polydispersity of treated chitosan; Carbohydr. Res. 299, 287-294.
  • 162. Lorimer J.P., Mason T.J., Cuthbert T.C. i Brookfield E.A. (1995); Effect of ultrasound on the degradation of aqueous native dextran; Ultrason. Sonochem. 2, 55-57.
  • 163. Weissler A. (1959); Formation of hydrogen peroxide by ultrasonic waves: free radicals; J. Am. Chem. Soc. 81, 1077-10811077.
  • 164. Anbar M. i Pecht I. (1964); On the sonochemical formation of hydrogen peroxide in water; J. Phys. Chem. 68, 352-355.
  • 165. Makino K., Mossoba M.M. i Riesz P. (1982); Chemical effects of ultrasound on aqueous solutions. Evidence for OH and H by spin trapping; J. Am. Chem. Soc. 104, 3537-3539.
  • 166. Makino K., Mossoba M.M. i Riesz P. (1983); Chemical effects of ultrasound on aqueous solutions. Formation of hydroxyl radicals and hydrogen atoms; J. Phys. Chem. 87, 1369-1377.
  • 167. Makino K., Mossoba M.M. i Riesz P. (1983); Formation of OH and H in aqueous solutions by ultrasound using clinical equipment; Radiat. Res. 96, 416-421.
  • 168. Riesz P., Berdahl D. i Christman C.L. (1985); Free radical generation by ultrasound in aqueous and nonaqueous solutions; Environ. Health Persp. 64, 233-252.
  • 169. Fang X., Mark G. i von Sonntag C. (1996); OH-Radical formation by ultrasound in aqueous solutions - Part I: The chemistry underlying the terephthalate dosimeter; Ultrason. Sonochem. 3, 57-63.
  • 170. von Sonntag C., Mark G., Schuchmann H.-P., von Sonntag J. i Tauber A. (1998); Free-Radical Formation in Water by Ionizing Radiation and by Ultrasound, w: Chemical Processes Under Extreme or Non-Classic Conditions, red.: Luche J.-L., Balny C., Benefice S., Denis J.M. i Pettier C., E.U. Directorate General, Science, Research and Development, Luxembourg, ss. 11-19.
  • 171. Mark G., Tauber A., Laupert R., Schuchmann H.-P., Schulz D., Mues A. i von Sonntag C. (1998); OH-radical formation by ultrasound in aqueous solution - Part II. Terephthalate and Fricke dosimetry and the influence of various conditions on the sonolytic yield; Ultrason. Sonochem. 5, 41-52.
  • 172. Borgwardt U., Schnabel W. i Henglein A. (1969); Pulsradiolytische Messung der Geschwindigkeitskonstanten der Kombination von Polyäthylenoxid-Radikalen in wäßriger Lösung; Makromol. Chem. 127, 176-184.
  • 173. Behzadi A., Borgwardt U., Henglein A., Schamberg E. i Schnabel W. (1970); Pulsradiolytische Untersuchung der Kinetik diffusionkontrollierter Reaktionen des OH-Radikals mil Polymeren und Oligomeren in wäßriger Lösung ; Ber. Bunsenges. phys. Chemie 74, 649-653.
  • 174. Behzadi A. i Schnabel W. (1973); Kinetic studies on the influence of conformation and chain length on the reaction of hydroxy radicals with poly(acrylic acid) in solution; Macromolecules 6, 824-826.
  • 175. von Sonntag C. (1987); The Chemical Basis of Radiation Biology; Taylor and Francis, London.
  • 176. Janik I., Kujawa P., Ulanski P. i Rosiak J.M. (1997); Pulse radiolysis of polymers in aqueous solution. Kinetic study; J. Chim. Phys. 94, 244-250.
  • 177. von Sonntag C. (2003); Free-radical-induced chain scission and cross-linking of polymers in aqueous solution - an overview; Radiat. Phys. Chem. 67, 353-359.
  • 178. Henglein A. i Gutierrez M. (1988); Sonolysis of polymers in aqueous solution. New observations on pyrolysis and mechanical degradation; J. Phys. Chem. 92, 3705-3707.
  • 179. Gutierrez M. i Henglein A. (1988); Sonolytic decomposition of poly(vinylpyrrolidone), ethanol, and tetranitromethane in aqueous solution; J. Phys. Chem. 92, 2978-2981.
  • 180. Henglein A. (1995); Chemical effects of continuous and pulsed ultrasound in aqueous solutions. Ultrason. Sonochem. 2, S115-S121.
  • 181. Krishna C.M., Kondo T. i Riesz P. (1988); Sonochemistry of aqueous solutions of amino acids and peptides. A spin trapping study; Radial. Phys. Chem. 32, 121-128.
  • 182. Henglein A. i Kormann C. (1985); Scavenging of OH radicals produced in the sonolysis of water; Int. J. Radial. Biol. 48, 251-258.
  • 183. Alegria A.E., Lion Y., Kondo T. i Riesz P. (1989); Sonolysis of aqueous surfactant solutions. Probing the interfacial region of cavitation bubbles by spin trapping; J. Phys. Chem. 93, 4908-4913.
  • 184. Tauber A., Mark G., Schuchmann H.-P. i von Sonntag C. (1999); Sonolysis of tert-butyl alcohol in aqueous solution; J. Chem. Soc. Perkin Trans. 2 1129-1135.
  • 185. Tauber A., Schuchmann H.-P. i von Sonntag C. (2000); Sonolysis of aqueous 4-nitrophenol at low and high pH; Ultrason. Sonochem. 7, 45-52.
  • 186. Buxton G.V., Greenstock C.L., Helman W.P. i Ross A.B. (1988); Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O) in aqueous solution.; J. Phys. Chem. Ref. Data 17, 513-886.
  • 187. Görlich W. i Schnabel W. (1972); Kinetic investigation of the dehydration of poly(vinyl alcohol) and model compounds in aqueous solution; Eur. Polym. J. 8, 1087-1095.
  • 188. Kurata M. i Tsunashima Y. (1999); Viscosity - Molecular Weight Relationships and Unperturbed Dimensions of Linear Chain Molecules, w: Polymer Handbook, Wyd. 4, red.: Brandrup J., Immergut E.H. i Grulke E.A., Wiley, Hoboken, NJ, Tom 2, ss. VII-l-VII-83.
  • 189. Matheson M.S., Mamou A., Silverman J. i Rabani J. (1973); Reaction of hydroxyl radicals with polyehylene oxide in aqueous solution; J. Phys. Chem. 77, 2420-2424.
  • 190. Schnabel W. (1981); Polymer Degradation. Principles and Practical Applications; Hanser, Munchen.
  • 191. O'Donnell J.H. (1991); Chemistry of Radiation Degradation of Polymers, w: Radiation Effects of Polymers, ACS Symposium Series 475, red.: Clough R.L. i Shalaby S.W., American Chemical Society, Washington, DC, ss. 402-413.
  • 192. Buehler V. (1993); Kollidon. Polyvinylpyrrolidone for the Pharmaceutical Industry; Wyd. 2, BASF, Ludwigshafen.
  • 193. Robinson B.V., Sullivan F.M., Borzelleca J.F. i Schwartz S.L. (1990); PVP: a Critical Review of the Kinetics and Toxicology of Polyvinylpyrrolidone (Povidone); Lewis Publishers, Chelsea, MI.
  • 194. Ajji Z., Othman I. i Rosiak J.M. (2005); Production of hydrogel wound dressings using gamma radiation; Nucl. Instr. Meth. B 229, 375-380.
  • 195. Rosiak J. i Olejniczak J. (1989); Polymer materials for biomedical use obtained by radiation methods. IV. The therapeutic system for local release of prostaglandins [Materiały polimerowe do celów biomedycznych otrzymywane metodami radiacyjnymi. IV. System terapeutyczny dla lokalnego uwalniania prostaglandyn.]; Polim. Med. 19, 93-106.
  • 196. Rosiak J.M. i Olejniczak J. (1993); Medical applications of radiation formed hydrogels; Radial. Phys. Chem. 42, 903-906.
  • 197. Rosiak J.M., Kowalski A. i Dec W. (1998); Drug delivery system for the treatment of endometrial carcinoma; Radial. Phys. Chem. 52, 307-311.
  • 198. Olejniczak J., Rosiak J. i Charlesby A. (1991); Gel/dose curves for polymers undergoing simultaneous crosslinking and scission; Radial. Phys. Chem. 37, 499-504.
  • 199. Sun B. i Yu T.-L. (1996); Study of microgelation of unsaturated polyester resins in the presence of low profile additives by dynamic light scattering; Macromol. Chem. Phys. 197, 275-287.
  • 200. Dusek J.Ed. (1993); Responsive Gels: Volume Transitions; Adv. Polym. Sci.; Vol. 109; Springer, Berlin.
  • 201. Langer R. (1998); Drug delivery and targeting; Nature 392 (Supplement), 5-10.
  • 202. Funke W., Okay O. i Joos-Muller B. (1998); Microgels - intramolecularly crosslinked macromolecules with a globular structure; Adv. Polym. Sci. 136, 139-234.
  • 203. Saunders B.R. i Vincent B. (1999); Microgel particles as model colloids: theory, properties and applications; Adv. Colloid Polym. Sci. 80, 1-25.
  • 204. Pelton R. (2000); Temperature-sensitive aqueous microgels; Adv. Colloid Interface Sci. 85, 1-33.
  • 205. Ulanski P. i Rosiak J.M. (2004); Polymeric Nano/Microgels, w: Encyclopedia of Nanoscience and Nanotechnology, red.: Nalwa H.S., American Scientific Publishers, Stevenson Ranch, CA, Tom VIII, ss. 845-871.
  • 206. Katchalsky A. i Gillis J. (1950); Theory of the potentiometric titration of polymeric acids; Proc.Int.Coll.Macromol., D.B.Ceten Uitgevers, Amsterdam.
  • 207. Oosawa F. (1971); Polyelectrolytes; Marcel Dekker, New York.
  • 208. Bekturov E.A. i Bakauova Z.K. (1986); Synthetic Water-Soluble Polymers in Solution; Huethig & Wepf, Basel.
  • 209. Ulanski P. (1996); Radiacyjne Przemiany Poli(Kwasu Akrylowego) w Roztworach Wodnych, praca doktorska, Politechnika Łódzka.
  • 210. Linden L.-A. (1999); Native and Synthetic lonotropic Hydrogels for Use in Dental Care, w: Proc. 5th Int.Symp. "Chemistry Forum'99", red.: Jarosz M., Politechnika Warszawska, Warszawa, ss. 65-68.
  • 211. Tadavarthy S.M., Moller J.H. i Amplatz K. (1975); Polyvinyl alcohol (Ivalon) - a new embolic material; Am. J. Roentgenol. Radium Ther. Nucl. Med. 125, 609-616.
  • 212. Chuang V.P., Soo C.S. i Wallace S. (1981); Ivalon embolization in abdominal neoplasms; Am. J. Roentgenol. 136, 729-733.
  • 213. Van Es R.J.J., Nijsen J.F.W., Dullens H.F.J., Kicken M., Van Der Bill A., Hennink W., Koole R. i Slootweg P.J. (2001); Tumour embolization of the Vx2 rabbit head and neck cancer model with Dextran hydrogel and Holmium-poly(L-lactic acid) microspheres: A radionuclide and histological pilot study; J. Cranio-Maxil. Surgery 29, 289-297.
  • 214. Hong K., Kobeiter H., Georgiades C.S., Torbenson M.S. i Geschwind J.F.H. (2005); Effects of the type of embolization particles on carboplatin concentration in liver tumors after transcatheter arterial chemoembolization in a rabbit model of liver cancer; J. Vascular Intervent. Radial. 16, 1711-1717.
  • 215. Kutlu R., Sarac K., Yilmaz S., Kirimlioglu V., Baysal T., Alkan A. i Sigirci A. (2005); Percutaneous right portal vein embolization with polyvinyl alcohol particles in gastric cancer metastasis: Report of a case; Surgery Today 35, 765-769.
  • 216. Vinogradov S.V., Bronich T.K. i Kabanov A.V. (2002); Nanosized cationic hydrogels for drug delivery: Preparation, properties and interactions with cells; Adv. Drug Delivery Rev. 54, 135-147.
  • 217. Al-Assaf S., Phillips G.O., Deeble D.J., Parsons B., Starnes H. i von Sonntag C. (1995); The enhanced stability of the cross-linked hylan structure to the hydroxyl (OH) radicals compared with the uncross-linked Hyaluran; Radial. Phys. Chem. 46, 207-217.
  • 218. Bekturov E. i Bimendina L.A. (1981); Interpolymer complexes; Adv. Polym. Sci. 41, 100-143.
  • 219. Smid J. i Fish D. (1988); Polyelectrolyte Complexes, w: Encyclopedia of Polymer Science and Engineering, Wyd. 2, red.: Mark H.F., Bikales M.N., Overberger C.G., Menges G. i Kroschwitz J., Wiley, New York, Tom 11, ss. 720-739.
  • 220. Bailey F.E., Lundberg R.D. i Callard R.W. (1964); Some factors influencing the molecular association of poly(ethylene oxide) and poly(acrylic acid) in aqueous solution; J. Polym. Sci. A 2, 845-851.
  • 221. Ikawa T., Abe K., Honda K. i Tsuchida E. (1975); Interpolymer complex between poly(ethylene oxide) and poly(carboxylic acid); J. Polym. Sci. :Polym. Chem. Ed. 13, 1505-1514.
  • 222. Morawetz H., Bednar B. i Shafer J.A. (1984); Kinetics of the Cooperative Complex Formation and Dissociation of Poly(acrylic acid) and poly(ethylene oxide); Macromolecules 17, 1636-1638.
  • 223. Iliopoulos I., Halary J.L. i Audebert R. (1988); Polymer complexes stabilized through hydrogen bonds. Influence of "structure defects" on complex formation: viscometry and fluorescence polarization measurements.; J. Polym. Sci. A: Polym. Chem. 26, 275-284.
  • 224. Pradip M.C., Somasundaran P., Kulkarni R.A. i Gundiah S. (1991); Polymer-polymer complexation in dilute aqueous solutions. Poly(acrylic acid)-poly(ethylene oxide) and poly(acrylic acid)-poly(vinylpyrrolidone); Langmuir 7, 2108-2111.
  • 225. Cohen Y. i Prevysh V. (1998); The structure of the interpolymer complex of poly(ethylene oxide) and poly(acrylic acid) in water-dioxane mixtures; Acta Polymerica 49, 539-543.
  • 226. Holappa S., Karesoja M., Shan J. i Tenhu H. (2002); Solution properties of linear and branched block copolymers consisting of acidic and PEO blocks; Macromolecules 35, 4733-4738.
  • 227. Khutoryanskiy V.V., Dubolazov A.V., Nurkeeva Z.S. i Mun G.A. (2004); pH effects in the complex formation and blending of poly(acrylic acid) with polyethylene oxide); Langmuir 20, 3785-3790.
  • 228. Khutoryanskiy V.V., Nurkeeva Z.S., Mun G.A. i Dubolazov A.V. (2004); Effect of temperature on aggregation/dissociation behavior of iinterpolymer complexes stabilized by hydrogen bonds; J. Appl. Polym. Sci. 93, 1946-1950.
  • 229. Klier J., Scranton A.B. i Peppas N.A. (1990); Self-associating networks of poly(methacrylic acid-g-ethylene glycol); Macromolecules 23, 4944-4949.
  • 230. Kim B. i Peppas N.A. (2003); Analysis of molecular interactions in poly(methacrylic acid-g-ethylene glycol) hydrogels; Polymer 44, 3701-3707.
  • 231. Holappa S., Kantonen L., Winnik P.M. i Tenhu H. (2004); Selfcomplexation of poly(ethylene oxide)-Wocfc-poly(methacrylic acid) studied by fluorescence spectroscopy; Macromolecules 37, 7008-7018.
  • 232. Huipeng Z., Lin W., Yang G. i Chen Q. (2005); Molecular weight effect on the complexation of poly(methacrylic acid) and poly(ethylene oxide) as studied by high-resolution solid-state 13C NMR spectroscopy; Eur. Polym. J. 41, 2354-2359.
  • 233. Arguelles-Monal W., Perez-Gramatges A., Peniche-Covas C., Desbrieres J. i Rinaudo M. (1998); Conductometric and viscometric study of the macro molecular complex between poly(acrylic acid) and poly( vinyl pyrrolidone); Eur. Polym. J. 34, 809-814.
  • 234. Liu S., Fang Y., Hu D., Gao G. i Ma J. (2001); Complexation between poly(methacrylic acid) and poly(vinylpyrrolidone); J. Appl. Polym. Sci. 82, 520-527.
  • 235. Shuping J., Liu M., Chen S. i Chen Y. (2005); Complexation between poly(acrylic acid) and poly(vinylpyrrolidone): Influence of the molecular weight of poly(acrylic acid) and small molecule salt on the complexation; Eur. Polym. J. 41, 2406-2415.
  • 236. Polacco G., Cascone M.G., Petarca L. i Peretti A. (2000); Thermal behaviour of poly(methacrylic acid)/poly(N-vinyl-2-pyrrolidone) complexes; Eur. Polym. J. 36, 2541-2544.
  • 237. Liu S., Yang M. i Dan Y. (2005); Complex system of poly(methacrylic acid) with poly(vinylpyrrolidone) in aqueous media; J. Appl. Polym. Sci. 96, 2280-2286.
  • 238. Lowman A.M., Peppas N.A., Morishita M. i Nagai T. (1998); Novel bioadhesive complexation networks for oral protein drug delivery; ACS Symposium Series 709, 156-164.
  • 239. Lowman A.M., Morishita M., Kajita M., Nagai T. i Peppas N.A. (1999); Oral delivery of insulin using pH responsive complexation gels; J. Pharm. Sci. 88, 933-937.
  • 240. Morishita M., Lowman A.M., Takayama K., Nagai T. i Peppas N.A. (2002); Elucidation of the mechanism of incorporation of insulin in controlled release systems based on complexation polymers; J. Controlled Release 81, 25-32.
  • 241. Nakamura K., Murray R.J., Joseph J.I., Peppas N.A., Morishita M. i Lowman A.M. (2004); Oral insulin delivery using P(MAA-g-EG) hydrogels: Effects of network morphology on insulin delivery characteristics; J. Controlled Release 95, 589-599.
  • 242. Foss A.C., Goto T., Morishita M. i Peppas N.A. (2004); Development of acrylic-based copolymers for oral insulin delivery; Eur. J. Pharm. Biopharm. 57, 163-169.
  • 243. Morishita M., Goto T., Nakamura K., Lowman A.M., Takayama K. i Peppas N.A. (2006); Novel oral insulin delivery systems based on complexation polymer hydrogels: Single and multiple administration studies in type 1 and 2 iabetic rats; J. Controlled Release 110, 587-594.
  • 244. Iliopoulos I. i Audebert R. (1985); Influence of concentration, molecular weight and degree of neutralization of polyacrylic acid on interpolymer complexes with polyoxyethylene; Polymer Bulletin 13, 171-178.
  • 245. Iliopoulos I. i Audebert R. (1991); Complexation of acrylic acid copolymers with polybases. Importance of cooperative effects; Macromolecules 24, 2566-2575.
  • 246. Galina H. (1998); Fizykochemia Polimerow; Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszow.
  • 247. Alakhov V., Pietrzynski G., Patel K., Kabanov A., Bromberg L. i Hatton T.A. (2004); Pluronic block copolymers and Pluronic poly(acrylic acid) microgels in oral delivery of megestrol acetate; J. Pharm. Pharmacol. 56, 1233-1241.
  • 248. Bromberg L., Temchenko M. i Hatton T.A. (2003); Smart microgel studies. Polyelectrolyte and drug-absorbing properties of microgels from polyether-modified poly(acrylic acid); Langmuir 19, 8675-8684.
  • 249. De Rossi D., Kajiwara K., Osada Y. i Yamauchi A. (1991); Polymer Gels. Fundamentals and Biomedical Applications; Plenum Press, New York.
  • 250. Pichot C., Elaissari A., Duracher D., Meunier F. i Sauzedde F. (2001); Hydrophilic stimuli-responsive particles for biomedical applications; Macromol. Symp. 175, 285-297.
  • 251. Hoffman A. (2004); Applications of "Smart Polymers" As Biomaterials, w: Biomaterials Science, Wyd. 2, red.: Ratner B.D., Hoffman A.S., Schoen F.J. i Lemons J.E., Elsevier, San Diego, ss. 107-115.
  • 252. Teraoka I. (2002); Polymer Solutions. An Introduction to Physical Properties; Wiley, New York.
  • 253. Home R.A., Almeida J.P., Day A.F. i Yu N.T. (1971); Macromolecule hydration and the effect of solutes on the cloud point of aqueous solutions of polyvinyl methyl ether: a possible model for protein denaturation and temperature control in homeothermic animals; J. Colloid Interface Sci. 35, 77-84.
  • 254. Maeda H. (1994); Interaction of water with poly(vinyl methyl ether) in aqueous solution; J. Polym. Sci. B 32, 91-97.
  • 255. Schafer-Soenen H., Moerkerke R., Berghmans H., Koningsveld R., Dusek K. i Sole K. (1997); Zero and off-zero critical concentrations in systems containing polydisperse polymers with very high molar masses. 2. The system water-poly(vinyl methyl ether); Macromolecules 30, 410-416.
  • 256. Meeussen F., Bauwens Y., Moerkerke R., Nies E. i Berghmans H. (2000); Molecular complex formation in the system poly(vinyl methyl ether)/water; Polymer 41, 3737-3743.
  • 257. Cerveny S., Colmenero J. i Alegria A. (2005); Dielectric investigation of the low-temperature water dynamics in the poly(vinyl methyl ether)/H2O system; Macromolecules 38, 7056-7063.
  • 258. Hirasa O., Ito S., Yamauchi A., Fujishige S. i Ochijo H. (1991); Thermoresponsive Polymer Hydrogel, w: Polymer Gels, red.: De Rossi D., Plenum Press, New York, ss. 247-256.
  • 259. Kabra E.G., Akhtar M.K. i Gehrke S.H. (1992); Volume change kinetics of temperature-sensitive poly(vinyl methyl-ether) gel; Polymer 33, 990-995.
  • 260. Moerkerke R., Meeussen F., Koningsveld R. i Berghmans H. (1998); Phase transitions in swollen networks. 3. Swelling behavior of radiation cross-linked poly(vinyl methyl ether) in water; Macromolecules 31, 2223-2229.
  • 261. Peppas N.A. i Sahlin J.J. (1996); Hydrogels as mucoadhesive and bioadhesive materials: A review; Biomaterials 17, 1553-1561.
  • 262. Bonferoni M.C., Rossi S., Ferrari F. i Caramella C. (1999); A modified Franz diffusion cell for simultaneous assessment of drug release and washability of mucoadhesive gels; Pharm. Dev. Technol. 4, 45-53.
  • 263. Woolfson A.D., McCafferty D.F. i Moss G.P. (1998); Development and characterization of a moisture-activated bioadhesive drug delivery system for percutaneous local anaesthesia; Int. J. Pharm. 169, 83-94.
  • 264. Bromberg L., Temchenko M. i Hatton T.A. (2002); Dually responsive microgels from polyether-modified poly(acrylic acid): swelling and drug loading; Langmuir 18,4944-4952.
  • 265. Bromberg L., Temchenko M., Moeser G.D. i Hatton T.A. (2004); Thermodynamics of temperature-sensitive olyether-modified poly(acrylic acid) microgels; Langmuir 20, 5683-5692.
  • 266. Kishi R., Ichijo H. i Hirasa O. (1993); Thermo-responsive devices using poly(vinyl methyl ether) hydrogels; J. Intel. Mater. Syst. Struct. 4, 533-537.
  • 267. Ichijo H., Kishi R., Hirasa O. i Takiguchi Y. (1994); Separation of organic substances with thermoresponsive polymer hydrogel; Polym. Gels and Networks 2,315-322.
  • 268. Ichijo H., Hirasa O., Kishi R., Oowada M., Kokufuta E. i Ohno S. (1995); Thermo-responsive gels; Radiat. Phys. Chem. 46, 185-190.
  • 269. Yoshida R., Ichijo H., Hakuta T. i Yamaguchi T. (1995); Self-oscillating swelling and deswelling of polymer gels; Macromol. Rapid Commun. 16, 305-310.
  • 270. Hiraide M. i Morishima A. (1997); Collection of traces of heavy metals on a thermally reversible polymer for the analysis of river water and seawater; Anal. Sci. 13,829-831.
  • 271. Richter A., Kuckling D., Howitz S., Gehring T. i Arndt K.F. (2003); Electronically controllable micro valves based on smart hydrogels: Magnitudes and potential applications; J. Microelectromech. Syst. 12, 748-753.
  • 272. Richter A., Howitz S., Kuckling D., Kretschmer K. i Arndt K.F. (2004); Automatically and electronically controllable hydrogel based valves and microvalves - Design and operating performance; Macromol. Symp. 210, 447-456.
  • 273. Arndt K.-F., Schmidt T. i Reichelt R. (2001); Thermo-sensitive poly(methyl vinyl ether) micro-gel formed by high energy radiation; Polymer 42, 6785-6791.
  • 274. Arndt K.F., Schmidt T. i Menge H. (2001); Poly (vinyl methyl ether) hydrogel formed by high energy irradiation; Macromol. Symp. 164, 313-322.
  • 275. Pich A., Lu Y., Adler H.J.P., Schmidt T. i Arndt K.F. (2002); Dispersion polymerization of pyrrole in the presence of poly (vinyl methyl ether) microgels; Polymer 43, 5723-5729.
  • 276. Schmidt T., Querner C. i Arndt K.F. (2003); Characterization methods for radiation crosslinked poly(vinyl methyl ether) hydrogels; Nucl. Instr. Meth. B 208,331-335.
  • 277. Querner C., Schmidt T. i Arndt K.F. (2004); Characterization of structural changes of poly(vinyl methyl ether) ? irradiated in diluted aqueous solutions; Langmuir 20, 2883-2889.
  • 278. Theiss D., Schmidt T. i Arndt K.F. (2004); Temperature-sensitive poly(vinyl methyl ether) hydrogel beads; Macromol. Symp. 210, 465-474.
  • 279. Theiss D., Schmidt T., Dorschner H., Reichelt R. i Arndt K.F. (2005); Filled temperature-sensitive poly(vinyl methyl ether) hydrogels; J. Appl. Polym. Sci. 98, 2253-2265.
  • 280. Hegewald J., Schmidt T., Gohs U., nther ML, Reichelt R., Stiller B. i Arndt K.F. (2005); Electron beam irradiation of poly(vinyl methyl ether) films: 1. Synthesis and film topography; Langmuir 21, 6073-6080.
  • 281. Arndt K.F., Schmidt T. i Reichelt R. (2001); Thermo-sensitive poly(methyl vinyl ether) micro-gel formed by high energy radiation; Polymer 42, 6785-6791.
  • 282. Schmidt M., Nerger D. i Burchard W. (1979); Quasi-elastic light scattering from branched polymers - 1. Polyvinylacetate and polyvinylacetate-microgels prepared by emulsion polymerization; Polymer 20, 582-588.
  • 283. Senff H. i Richtering W. (1999); Temperature sensitive microgel suspensions: Colloidal phase baheviour and rheology of soft spheres; J. Chem. Phys. III, 1705-1711.
  • 284. Burchard W. (1999); Solution properties of branched macromolecules; Adv. Polym. Sci. 143, 114-194.
  • 285. Antonietti M., Bremser W. i Schmidt M. (1990); Microgels: model polymers for the cross-lined state; Macromolecules 23, 3796-3805.
  • 286. Dubouchet J., Chang J.-J., Freeman R., Lepaut J. i McDowall A.W. (1982); Frozen aqueous suspensions; Ultramicroscopy 10, 55-61.
  • 287. Sabharval S., Mohan H., Bhardwaj Y.K. i Majali A.B. (1999); Radiation induced crosslinking of poly(vinyl methylether) in aqueous solutions; Radial. Phys. Chem. 54, 643-653.
  • 288. Panda A., Manohar S.B., Sabharwal S., Bhardwaj Y.K. i Majali A.B. (2000); Synthesis and swelling characteristics of poly (N-isopropylacrylamide) temperature sensitive hydrogels crosslinked by electron beam irradiation; Radiat. Phys. Chem. 58, 101-110.
  • 289. Wach R.A., Mitomo H., Yoshii F. i Kume T. (2002); Hydrogel of radiation-induced cross-linked hydroxypropylcellulose; Macromol. Mater. Eng. 287, 285-295.
  • 290. Torigoe K., Remita H., Beaunier P. i Belloni J. (2002); Radiation-induced reduction of mixed silver and rhodium ionic aqueous solution; Radiat. Phys. Chem. 64, 215-222.
  • 291. Savas H. i Güven O. (2002); Gelation, swelling and water vapor permeability behavior of radiation synthesized poly(ethylene oxide) hydrogels; Radiat. Phys. Chem. 64, 35-40.
  • 292. Krsko P., Sukhishvili S., Mansfield M., Clancy R. i Libera M. (2003); Electron-beam surface-patterned poly(ethylene glycol) microhydrogels; Langmuir 19, 5618-5625.
  • 293. Narita T., Terao K., Dobashi T., Nagasawa N. i Yoshii F. (2004); Preparation and characterization of core-shell nanoparticles hardened by gamma-ray; Colloid Surf. B3S, 187-190.
  • 294. Wei H., Wang L., Zhang A., Zhu K. i Feng Z. (2004); Preparation and applications of injectable hydrogels; Prog. Chem. 16, 1008-1016.
  • 295. Hirakura T., Nomura Y., Aoyama Y. i Akiyoshi K. (2004); Photoresponsive nanogels formed by the self-assembly of spiropyrane-bearing pullulan that act as artificial molecular chaperones; Biomacromolecules 5, 1804-1809.
  • 296. Safrany A. i Wojnarovits L. (2004); Electron-beam initiated crosslinking in poly(N-isopropylacrylamide) aqueous solution; Radial. Phys. Chem. 69, 289-293.
  • 297. Park S.E., Nho Y.C. i Kim H.I. (2004); Preparation of poly(polyethylene glycol methacrylate-co-acrylic acid) hydrogels by radiation and their physical properties; Radial. Phys. Chem. 69, 221-227.
  • 298. Furusawa K., Terao K., Nagasawa N., Yoshii F., Kubota K. i Dobashi T. (2004); Nanometer-sized gelatin particles prepared by means of gamma-ray irradiation; Colloid Polym. Sci. 283, 229-233.
  • 299. Peng J., Zhu Y.C., Zhai M.L., Qiao J.L. i Wei G.S. (2005); Influence of OH radicals on the radiation effect of polydimethylsiloxane latex; Acta Physico-Chimica Sinica 21, 873-877.
  • 300. Zakurdaeva O.A., Nesterov S.V. i Feldman V.I. (2005); Radiolysis of aqueous solutions of poly(ethylene oxide) at 77 K; High Energy Chem. 39, 201-206.
  • 301. Nurkeeva Z.S., Mun G.A., Dubolazov A.V. i Khutoryanskiy V.V. (2005); pH effects on the complexation, miscibility and radiation-induced crosslinking in poly(acrylic acid)-poly(vinyl alcohol) blends; Macromol. Biosci. 5, 24-432.
  • 302. Aliyar H.A., Hamilton P.D., Remsen E.E. i Ravi N. (2005); Synthesis of polyacrylamide nanogels by intramolecular disulfide cross-linking; J. Bioact. Compat. Polym. 20, 169-181.
  • 303. Chen Q., Shen X. i Gao H. (2005); Synthesis of poly(N,N'-methylenebisacry-lamide-co-4-vinylpyridine) microgels by gamma-ray irradiation; Acta Polymerica Sinica 60-65.
  • 304. Lyu S.G., Kim B.J. i Sur G.S. (2006); Formation of nanoparticles of Ag in poly(vinyl methyl ether) hydrogel network by electron beam irradiation; Compos. Interf. 13, 269-275.
  • 305. Bromberg L., Temchenko M., Alakhov V. i Hatton T.A. (2005); Kinetics of swelling of polyether-modified poly(acrylic acid) microgels with permanent and degradable cross-links; Langmuir 21, 1590-1598.
  • 306. Drummond R.K., Klier J., Alameda J.A. i Peppas N.A. (1989); Preparation of poly(methacrylic acid-g-ethylene oxide] microspheres; Macromolecules 22, 3816-3818.
  • 307. Lowman A.M., Morishita M., Kajita M., Nagai T. i Peppas N.A. (1999); Oral delivery of insulin using H-responsive complexation gels; J. Pharm. Sci. 88, 933-937.
  • 308. Morishita M, Lowman A.M., Takayama K., Nagai T. i Peppas N.A. (2002); Elucidation of the mechanism of incorporation of insulin in controlled release systems based on complexation polymers; J. Controlled Release 81, 25-32.
  • 309. Torres-Lugo M. i Peppas N.A. (2002); Preparation and characterization of P(MAA-g-EG) nanospheres for protein delivery applications; J. Nanoparticle Res. 4, 73-81.
  • 310. Kabanov A.V., Lemieux P., Vinogradov S. i Alakhov V. (2002); Pluronic block copolymers: novel functional molecules for gene therapy; Adv. Drug Delivery Rev. 54, 223-233.
  • 311. Bromberg L., Desmukh S., Temchenko M., lourtchenko L., Alakhov V., Alvarez-Lorenzo C, Barreiro-Iglesias R., Concheiro A. i Hatton T.A. (2005); Polycationic block copolymers of poly(ethylene oxide) and poly(propylene oxide) for cell transfection; Bioconjugate Chem. 16, 626-633.
  • 312. Neta P., Grodkowski J. i Ross A.B. (1996); Rate constants for reactions of aliphatic carbon-cebtered radicals in aqueous solution; J. Phys. Chem. Ref. Data 25, 709-1050.
  • 313. Smoluchowski M. (1917); Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Losungen; Z. physik. Chem. 92, 129-168.
  • 314. Goerlich W. i Schnabel W. (1973); Untersuchungen ueber der Einfluss der Ladungsdichte auf die gegenseitige Desaktivierung von Polyion-Makroradikalen; Makromol. Chem. 164, 225-235.
  • 315. Sabharval S., Mohan H., Bhardwaj Y.K. i Majali A.B. (1996); Structure-reactivity studies on the crossliking of poly(vinyl methyl ether) in aqueous solutions: A pulse radiolysis study; J. Chem. Soc. Farad. Trans. 92, 4401-4406.
  • 316. Ulanski P., Janik I. i Rosiak J.M. (1998); Radiation formation of polymeric nanogels; Radial. Phys. Chem. 52, 289-294.
  • 317. Plonka A. (1991); Developments in dispersive kinetics; Prog. Reaction Kinetics 16, 157-333.
  • 318. Plonka A. (2001); Dispersive Kinetics; Kluwer Academic Publishers, Dordrecht.
  • 319. Wilemski G. i Fixman M. (1973); General theory of diffusion-controlled reactions; J. Chem. Phys. 58, 009-4019.
  • 320. Wilemski G. i Fixman M. (1974); Diffusion-controlled intrachain reactions of polymers. I. Theory; J. Chem. Phys. 60, 866-877.
  • 321. Wilemski G. i Fixman M. (1974); Diffusion-controlled intrachain reactions of polymers. II. Results for a pair of terminal reactive groups; J. Chem. Phys. 60, 878-890.
  • 322. Perico A. i Cuniberti C. (1977); Dynamics of chain molecules. Intramolecular diffusion controlled reactions for a pair of terminal reactive groups; J. Polym. Sci. Polym. Phys. Ed. 15, 1435-1450.
  • 323. Cuniberti C. i Perico A. (1984); Intramolecular diffusion-controlled reactions and polymer dynamics; Prog. Polym. Sci. 10, 271-316.
  • 324. Perico A. i Beggiato M. (1990); Intramolecular diffusion-controlled reactions in polymers in the optimized Rouse-Zimm approach. 1. The effect of chain stiffness, reactive site positions and site numbers; Macromolecules 23, 797-803.
  • 325. Friedman B. i O'Shaughnessy B. (1993); Theory of intramolecular reactions in polymeric liquids; Macromolecules 26, 4888-4898.
  • 326. Cuniberti C. i Perico A. (1977); Intramolecular excimers and microbrownian motion in flexible polymer molecules in solution; Eur. Polym. J. 13, 369-374.
  • 327. Schnabel W. (1979); Laser flash photolysis of poly(p-vinylbenzophenone) in solution. Intramolecular triplet deactivation process; Makromol. Chem. 180, 1487-1495.
  • 328. Svirskaya P., Danhelka J., Redpath A.E.C. i Winnik M.A. (1983); Cyclization dynamics of polymers - 7. Application of the pyrene excimer technique to the internal dynamics of poly(dimethylsiloxane) chains; Polymer 24, 319-322.
  • 329. Winnik M.A., Bai li X. i Guillet J.E. (1985); Cyclization of polystyrene chains in the crossover region between theta and good solvents: Cyclization dynamics of polymers 12; J Polym. Sci. C: Polym. Symp. 113-120.
  • 330. Boileau S., Mechin P., Martinho J.M.G. i Winnik M.A. (1989); End-to-end Cyclization of a pyrene end-capped poly(bisphenol A-diethylene glycol carbonate); Macromolecules 22, 215-220.
  • 331. Martinho J.M.G., Reis e Sousa i Winnik M.A. (1993); Effect of temperature and solvent on the Cyclization of a polystyrene chain; Macromolecules 26, 4484-4488.
  • 332. Lee S. i Winnik M.A. (1997); Cyclization rates for two points in the interior of a polymer chain; Macromolecules 30, 2633-2641.
  • 333. Dias F.B., Lima J.C., Pierola I.F., Horta A. i Macanita A.L. (2001); Internal dynamics of poly(methylphenylsiloxane) chains as revealed by picosecond time resolved fluorescence; J. Phys. Chem. A 105, 10286-10295.
  • 334. Sakata M. i Doi M. (1976); Computer simulation of the intramolecular reaction of polymers; Polym. J. (Tokyo) 8, 409-413.
  • 335. Garcia Fernandez J.L., Rey A., Freire J.J. i Fernandez de Pierola I. (1990); Cyclization dynamics of flexible polymers. Numerical results from Brownian trajectories; Macromolecules 23, 2057-2061.
  • 336. Podtelezhnikov A. i Vologodskii A. (1997); Simulations of polymer Cyclization by Brownian dynamics; Macromolecules 30, 6668-6673.
  • 337. Ortiz-Repiso M., Freire J.J. i Rey A. (1998); Intramolecular reaction rates of flexible polymers. 1. Simulation results and the classical theory; Macromolecules 31, 8356-8362.
  • 338. Ortiz-Repiso M. i Rey A. (1998); Intramolecular reaction rates of flexible polymers. 2. Comparison with the renormalization group theory; Macromolecules 31, 8363-8369.
  • 339. Klenin K.V. i Langowski J. (2004); Modeling of intramolecular reactions of polymers: An efficient method based on Brownian dynamics simulations; J. Chem. Phys. 121, 4951-4960.
  • 340. Pakula T. (1987); Cooperative relaxations in condensed macromolecular systems .1. A model for computer simulation; Macromolecules 20, 679-682.
  • 341. Pakula T. i Geyler S. (1987); Cooperative relaxations in condensed macromolecular systems .2. Computer simulation of self-diffusion of linear chains; Macromolecules 20, 2909-2914.
  • 342. Gauger A. i Pakula T. (1995); Static properties of noninteracting comb polymers in dense and dilute media - a Monte-Carlo study; Macromolecules 28, 190-196.
  • 343. Pakula T., Geyler S., Edling T. i Boese D. (1996); Relaxation and viscoelastic properties of complex polymer systems; Rheol. Acta 35, 631-644.
  • 344. Pakula T. (1996); Studies of complex polymer systems by computer simulation; Recent Res. Devel. Polymer Sci. 1, 101.
  • 345. Pakula T. i Jeszka K. (1999); Simulation of single complex macromolecules. 1. Structure and dynamics of catenanes; Macromolecules 32, 6821-6830.
  • 346. Bhardwaj Y.K., Mohan H., Sabharwal S. i Majali A.B. (2000); Role of radiolytically generated species in radiation induced polymerization of sodium p-styrene sulphonate (SSS) in aqueous solution: Steady state and pulse radiolysis study; Radial. Phys. Chem. 58, 373-385.
  • 347. Bhardwaj Y.K., Mohan H., Sabharwal S. i Mukherjee T. (2001); Radiation effect on poly (p-sodium styrene sulphonate) of different degrees of polymerization in aqueous solution: Pulse radiolysis and steady state study; Radiat. Phys. Chem. 62, 229-242.
  • 348. Garcia N., Tiemblo P., Hermosilla L., Sieiro C. i Guzman J. (2005); Long-lived radicals in the postpolymerization of methacrylic monomers at low conversions; Macromolecules 38, 7601-7609.
  • 349. Pinner S.H. (1952); Polymerization rate of methacrylic acid; J. Polym. Sci. 9, 282-285.
  • 350. Blauer G. (1953); Rate of polymerization of methacrylic acid in alkaline solution; J. Polymer Sci. 11, 189-192.
  • 351. Lacik L, Beuermann S. i Buback M. (2004); PLP-SEC study into the free-radical propagation rate coefficients of partially and fully ionized acrylic acid in aqueous solution; Macromol. Chem. Phys. 205, 1080-1087.
  • 352. Rintoul I. i Wandrey C. (2005); Polymerization of ionic monomers in polar solvents: kinetics and mechanism of the free radical copolymerization of acrylamide/acrylic acid; Polymer 46, 4525-4532.
  • 353. Baxendale J.H. i Thomas J.K. (1958); The degradation of polymethacrylic acid by ultraviolet and X- irradiation; Trans. Farad. Soc. 54, 1515-1525.
  • 354. Ranby B. i Rabek J.F. (1975); Photodegradation, Photo-Oxidation and Photostabilization of Polymers. Principles and Applications; Wiley, London.
  • 355. Chen T.S. i Thomas J.K. (1980); Radiation induced degradation of polymethacrylic acid in aqueous solution; Radiat. Phys. Chem. 15, 429-433.
  • 356. Nishide H., Cho M.D., Kaku T. i Okamoto Y. (1993); Investigation of the reactions of the OH radical with poly(acrylic acid) and poly(methacrylic acid) in aqueous solution using the Tb3+ fluorescence probe; Macromolecules 26, 2377-2379.
  • 357. Neta P., Simic M. i Hayon E. (1969); Pulse radiolysis of aliphatic acids in aqueous solutions. I. Simple monocarboxylic acids; J. Phys. Chem. 73,4207-4213.
  • 358. Berkowitz J., Ellison G.B. i Gutman D. (1994); Three methods to measure RH bond energies; J. Phys. Chem. 98, 2744-2765.
  • 359. R.C.Weast, M.J.Astle i W.H.Beyer (eds) (1986); CRC Handbook of Chemistry and Physics , 67th Edition; CRC Press, Inc. Boca Raton, Florida.
  • 360. Bothe E., Behrens G., Bohm E., Sethuram B. i Schulte-Frohlinde D. (1986); Hydroxyl radical-induced strand break formation of poly(U) in the presence of oxygen: comparison of the rates as determined by conductivity, e.s.r. and rapid-mix experiments with a thiol; Int. J. Radiat. Biol. 49, 57-66.
  • 361. Adinarayana M., Bothe E. i Schulte-Frohlinde D. (1988); Hydroxyl radical-induced strand break formation in single- stranded polynucleotides and single-stranded DNA in aqueous solution as measured by light scattering and by conductivity; Int. J. Radiat. Biol. 54,723-737.
  • 362. Bothe E., Qureshi G.A. i Schulte-Frohlinde D. (1983); Rate of OH radical induced strand break formation in single stranded DNA under anoxic conditions. An investigation in aqueous solutions using conductivity methods; Z. Naturforsch. 38c, 1030-1042.
  • 363. Ulanski P. i von Sonntag C. (2000); OH-Radical-induced chain scission of chitosan in the absence and presence of dioxygen; J. Chein. Soc. , Perkin Trans. 2 2000, 2022-2028.
  • 364. Deeble D.J., Bothe E., Schuchmann H.-P., Parsons B.J., Phillips G.O. i von Sonntag C. (1990); The kinetics of hydroxyl-radical-induced strand breakage of hyaluronic acid. A pulse radiolysis study using conductometry and laser-light-scattering; Z. Naturforsch. 45c, 1031-1043.
  • 365. Deeble D.J., Phillips G.O., Bothe E., Schuchmann H.-P. i von Sonntag C. (1991); The radiation-induced degradation of hyaluronic acid; Radiat. Phys. Chem. 37, 115-118.
  • 366. Manning G.S. (1978); The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides; Quart. Rev. Biophys. 11,179-246.
  • 367. Manning G.S. (1979); Counterion binding in polyelectrolyte theory; Ace. Chem. Res. 12,443-449.
  • 368. Vogl O., Qin M.F. i Zilkha A. (1999); Head to head polymers; Prog. Polym. Sci. 24, 1481-1525.
  • 369. Billingham N.C. i Ledwith A. (1974); General Aspects of Reactivity and Structure in Polymerization Processes, w: Reactivity, Mechanism and Structure in Polymer Chemistry, red.: Jenkins A.D. i Ledwith A., Wiley, London, ss. 42-51.
  • 370. Maruthamuthu P. (1980); Absolute rate constants for the reactions of sulfate, phosphate and hydroxyl radicals with monomers; Makromol. Chem., Rapid Commun. 1, 23-25.
  • 371. Kumar M., Rao M.H., Moorthy P.N. i Rao K.N. (1988); Structural influences on the reactivity of vinyl monomers with hydroxyl radicals and hydrated electrons studied by pulse radiolysis; Radiat. Eff. Express 1, 167-173.
  • 372. Olaj O.F. i Vana P. (1998); Chain-length dependent termination in pulsed-laser polymerization, 5. The evaluation of the rate coefficient of bimolecular termination kt for the reference system styrene in bulk at 25 °C; Macromol. Rapid Commun. 19,433-439.
  • 373. Olaj O.F. i Vana P. (1998); Chain-length dependent termiantion in pulsed-laser polymerization, 6. The evaluation of the rate coefficient of bimolecular termination kt for the reference system methyl methacrylate in bulk at 25 °C; Macromol. Rapid Commun. 19, 533-538.
  • 374. Olaj O.F., Kornherr A. i Zifferer G. (1999); Chain-length-dependent termination in rotating sector polymerization. 2. Evaluation of the rate coefficient of bimolecular chain termination kt, Macromolecules 32, 8800-8806.
  • 375. Bunker D.L., Garrett B., Kleindienst T. i Long III G.S. (1974); Discrete simulation methods in combustion kinetics; Combust. Flame 23, 373-379.
  • 376. Gillespie D.T. (1976); A general method for numerically simulating the stochastic time evolution of coupled chemical reactions; J. Comput. Phys. 22, 403-434.
  • 377. Wetterauer U., Knobloch J., Hess P. i Houle F.A. (1998); In situ Fourier transform infrared spectroscopy and stochastic modeling of surface chemistry of amorphous silicon growth; J. Appl. Phys. 83, 6096-6105.
  • 378. Ulanski P., Merenyi G., Lind J., Wagner R. i von Sonntag C. (1999); The reaction of methyl radicals with hydrogen peroxide; J. Chem. Soc. Perkin Trans. 2 1999, 673-676.
  • 379. Ulanski P. i von Sonntag C. (1999); The OH-radical-induced chain reactions of methanol with hydrogen peroxide and with peroxodisulfate; J. Chem Soc. Perkin Trans. 2 1999, 165-168.
  • 380. Theruvathu J.A., Aravindakumar C.T., Flyunt R., von Sonntag J. i von Sonntag C. (2001); Fenton chemistry of 1,3-dimethyluracil; J. Am. Chem. Soc. 123, 9007-9014.
  • 381. Houle F.A. i Hinsberg W.D. (1995); Stochastic simulations of temperature programmed desorption kinetics; Surface Sci. 338, 329-346.
  • 382. Wallraff G.M., Hinsberg W.D., Houle F.A., Opitz J., Hopper D. i Hutchinson J.M. (1995); Kinetics of chemically amplified resists; Proc. SPIE-Int. Soc. Opt. Eng. 2438, 182-190.
  • 383. Houle F.A., Hinsberg W.D. i Sanchez M.I. (2002); Kinetic model for positive tone resist dissolution and roughening; Macromolecules 35, 8591-8600.
  • 384. Brandrup J., Immergut E.H., i Grulke E.A. (red.) (1999); Polymer Handbook; Wyd. 4, Wiley-Interscience, Hoboken, NJ.
  • 385. Bywater S. (1955); Photosensitized polymerization of methyl methacrylate in dilute solution above 100 °C; Trans. Faraday Soc. 51, 1267-1273.
  • 386. Wojnarovits L. i Takacs E. (1999); Reaction of methyl methacrylate with OH radicals in dilute aqueous solution. A pulse radiolysis study; Res. Chem. Intermed. 25, 275-283.
  • 387. Matuszewska-Czerwik J. i Połowinski S. (1991); Template photopolymerization of methacrylic acid in water-IV. Determination of rate constants of elementary processes; Eur. Polym. J. 27, 1335-1337.
  • 388. Gal'perina N.I., Gromov W.F., Khomikovskii P.M. i Abkin A.D. (1975); Polymerization of methacrylic acid in various solvents; Vysokomol. Soed. B 17, 674-677.
  • 389. Kuchta F.-D., van Herk A.M. i German A.L. (2000); Propagation kinetics of acrylic and methacrylic acid in water and organic solvents studied by pulsed-laser polymerization; Macromolecules 33, 3641-3649.
  • 390. Beuermann S., Paquet D.A., McMinn J.H. i Hutchinson R.A. (1997); Propagation kinetics of methacrylic acid studied by pulsed-laser polymerization; Macromolecules 30, 194-197.
  • 391. Beuermann S., Buback M., Hesse P. i Lacik I. (2006); Free-radical propagation rate coefficient of nonionized methacrylic acid in aqueous solution from low monomer concentrations to bulk polymerization; Macromolecules 39, 184-193.
  • 392. North A.M. (1974); The Influence of Chain Structure on the Free-Radical Termination Reaction, w: Reactivity, Mechanism and Structure in Polymer Chemistry, red.: Jenkins A.D. i Ledwith A., Wiley, London, ss. 143-152.
  • 393. Bywater S. (1999); Absolute propagation constants in vinyl polymerization; J. Polym. Sci. A: Polym. Chem. 37, 4467-4477.
  • 394. Matsumoto A. i Mizuta K. (1994); Evaluation of the chain-length dependence of the termination rate constant during radical polymerization of a methacrylic ester; Macromolecules 27, 1657-1659.
  • 395. Evans A.G. i Tyrrall E. (1947); Heats of polymerization of acrylic acid and derivatives; J. Polym. Sci. 2, 387-396.
  • 396. McCurdy K.G. i Laidler K.J. (1964); Thermochemical studies of some acrylate and methacrylate polymerizations in emulsion systems; Can. J. Chem. 42, 818-824.
  • 397. Muzzarelli R.A.A. (1984); Chitin, w: The Polysaccharides, red.: Aspinall G.O., Academic Press, New York, Tom 3, ss. 417-450.
  • 398. Dutkiewicz J. (1988); Practical applications of krill chitin; Kosmos 37, 55-64.
  • 399. Allan G.G., Altaian L.C., Bensinger R.E., Ghosh D.K., Hirabayashi Y., Negoi A.N. i Negoi S. (1984); Biomedical Applications of Chitin and Chitosan, w: Chitin, Chitosan and Related Enzymes, red.: Zikakis J.P., Academic Press, Inc., Orlando, ss. 119-133.
  • 400. Sugano M., Watanabe S., Kishi A., Izume M. i Ohtakara A. (1988); Hypocholesterolemic action of chitosan with different viscosity in rats; Lipids 23, 187-191.
  • 401. Czechowska-Biskup R., Ulanski P., Rosiak J.M., Kumor A., Kozak-Michałowska I., Lorenc J. i Meler J. (2004); Examination of Plant Fat- and Cholesterol Binding by Chitosan of Various Molecular Weights - Preliminary Data, w: Progress on Chemistry and Application of Chitin and Its Derivatives, red.: Struszczyk H., Polish Chitin Society, Lodz, Tom 10, ss. 121-130.
  • 402. Wojtasz-Pajak A., Kolodziejska I., Debogorska A. i Malesa-Ciecwierz M. (1998); Enzymatic, physical and chemical modifications of krill chitin; Bull. Sea Fish. Inst. (Gdynia) 143, 29-39.
  • 403. Hasegawa M., Isogai A. i Onabe F. (1993); Preparation of low-molecular-weight chitosan using phosphoric acid; Carbohydr. Polym. 20, 279-283.
  • 404. Allan G.G. i Peyron M. (1995); Molecular weight manipulation fo chitosan. I: Kinetics of depolymerization by nitrous acid; Carbohydr. Res. 277, 257-272.
  • 405. Allan G.G. i Peyron M. (1995); Molecular weight manipulation of chitosan. II: Prediction and control of extent of depolymerization by nitrous acid; Carbohydr. Res. 277, 273-282.
  • 406. Plisko E.A., Shchelkunova L.I. i Nud'ga L.A. (1977); Changes in the properties of chitosan under the action of gamma-irradiation; Zh. Prikl. Khim. 50, 2040-2044.
  • 407. Ulanski P. i Rosiak J. (1992); Preliminary studies on radiation-induced changes in chitosan; Radial. Phys. Chem.
  • 408. Zhao W.W., Zhong X.G., Yu L., Zhang Y.F. i Sun J.Z. (1993); Some chemical changes in chitosan induced by gamma-ray irradiation; Polym. Degrad. Stab. 41, 83-84.
  • 409. Ulanski P., Wojtasz-Pajak A., Rosiak J.M. i von Sonntag C. (2000); Radiolysis and Sonolysis of Chitosan - Two Convenient Techniques for a Controlled Reduction of the Molecular Weight, w: Advances in Chitin Science, Vol. 4, red.: Peter M.G., Muzzarelli R.A.A. i Domard A., University of Potsdam, Potsdam, Tom4,ss. 429-435.
  • 410. Katakis D. i Alien A.O. (1964); The radiolysis of aqueous perchloric acid solutions; J. Phys. Chem. 68, 3107-3115.
  • 411. Konstantatos J. (1967); The radiolysis of concentrated neutral sodium perchlorate aqueous solutions; J. Phys. Chem. 71, 979-983.
  • 412. Katakis D. i Konstantatos J. (1968); Decomposition of aqueous perchlorates by radiation; J. Phys. Chem. 72, 2054-2057.
  • 413. Domae M., Katsumura Y., Jiang P.Y., Nagaishi R., Ishigure K., Kozawa T. i Yoshida Y. (1996); Pulse and gamma-radiolysis of concentrated perchloric acid solutions; J. Chem. Soc. - Faraday Trans. 1996, 2245-2250.
  • 414. Neta P., Hoffman M.Z. i Simic M. (1972); Electron spin resonance and pulse radiolysis studies of the reactions of OH and O" radicals with aromatic and olefinic compounds; J. Phys. Chem. 76, 847-853.
  • 415. Myint P., Deeble D.J., Beaumont P.C., Blake S.M. i Phillips G.O. (1987); The reactivity of various free radicals with hyaluronic acid: steady-state and pulse radiolysis studies; Biochim. Biophys. Acta 925, 194-202.
  • 416. von Sonntag C. (1980); Free radical reactions of carbohydrates as studied by radiation techniques; Adv. Carbohydr. Chem. Biochem. 37, 7-77.
  • 417. Gilbert B.C., King D.M. i Thomas C.B. (1981); Radical reactions of carbohydrates. Part 2. An electron spin resonance study of the oxidation of D-glucose and related compounds with the hydroxyl radical; J. Chem. Soc. Perkin Trans. 2 1186-1199.
  • 418. Gilbert B.C., King D.M. i Thomas C.B. (1984); The oxidation of some polysaccharides by the hydroxyl radical: An E.S.R. investigation; Carbohydr. Res. 125,217-235.
  • 419. Zegota H. i von Sonntag C. (1977); Radiation chemistry of carbohydrates, XV. OH radical induced scission of the glycosidic bond in disaccharides; Z. Naturforsch. 32b, 1060-1067.
  • 420. Adams G.E. i Willson R.L. (1969); Pulse radiolysis studies on the oxidation of organic radicals in aqueous solution; Trans. Faraday Soc. 65, 2981-2987.
  • 421. Bothe E., Schulte-Frohlinde D. i von Sonntag C. (1978); Radiation chemistry of carbohydrates. Part 16. Kinetics of HO2 elimination from peroxyl radicals derived from glucose and polyhydric alcohols; J. Chem. Soc. Perkin Trans. 2 1978, 416-420.
  • 422. Schuchmann M.N. i von Sonntag C. (1978); The effect of oxygen on the OH-radical-induced scission of the glycosidic linkage of cellobiose; Int. J. Radial. Biol. 34, 397-400.
  • 423. Bennett J.E., Brown D.M. i Mile B. (1970); Studies by electron spin resonance of the reactions of alkylperoxy radicals. Part 2. Equilibrium between alkylperoxy radicals and tetroxide molecules; Trans. Faraday Soc. 66, 397-405.
  • 424. Howard J.A. i Bennett I.E. (1972); The self-reaction of sec-alkylperoxy radicals: A kinetic electron spin resonance study; Can. J. Chem. 50, 2374-2377.
  • 425. Mues A. (1994); Ultraschallreaktor-Design: Technische Moglichkeiten in Der Sonochemie, w: 1st Circular "Arbeitsgruppe Sonochemie", Dechema, Frankfurt am Main,
  • 426. Gutierrez M., Henglein A. i Ibanez F. (1991); Radical scavenging in the sonolysis of aqueous solutions of I-, Br- and N-; J. Phys. Chem. 95, 6044-6047.
  • 427. Willson R.L., Greenstock C.L., Adams G.E., Wageman R. i Dorfman L.M. (1971); The standardization of hydroxyl radical rate data from radiation chemistry; Int. J. Radiat. Phys. Chem. 3, 211-220.
  • 428. Suslick K.S., Grinstaff M.W., Kolbeck K.J. i Wong M. (1994); Characterization of sonochemically prepared proteinaceous microspheres; Ultrason. Sonochem. 1, S65-S68.
  • 429. Price GJ. (1996); Ultrasonically enhanced polymer synthesis; Ultrason. Sonochem. 3, S229-S238.
  • 430. Ulanski P., Pawlowska W., Henke A., Gottlieb R., Arndt K.-F., Bromberg L. i Hatton T.A. (2006); Synthesis of hydrogels by radiation-induced cross-linking of Pluronic F127 in N2O-saturated aqueous solution; Polym. Adv. Technol. 17, 804-813.
  • 431. Wanka G., Hoffman H. i Ulbricht W. (1994); Phase diagrams and aggregation behavior of poly (oxyethylene)-poly(oxyethylene) triblock copolymers in aqueous solutions; Macromolecules 27, 4145-4159.
  • 432. Alexandridis P. i Hatton T.A. (1995); Polyethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modelling; Colloid Surf. A 96,1-46.
  • 433. Bromberg L. (2002); Hydrophobically Modified Polyelectrolytes and Polyelectrolyte Block-Copolymers for Biomedical Applications, w: Handbook of Polyelectrolytes and Their Applications, Vol. 3, Applications of Polyelectrolytes and Theoretical Models, red.: Tripathy S.K., Kumar J. i Nalwa H.S., American Scientific Publishers, ss. 23-46.
  • 434. Kabanov A.V., Batrakova E.V. i Alakhov V.Y. (2002); Pluronic® block copolymers for overcoming drug resistance in cancer; Adv. Drug Delivery Rev. 54, 759-779.
  • 435. Kabanov A.V., Batrakova E.V. i Miller D.W. (2003); Pluronic® block copolymers as modulators of drag efflux transporter activity in the blood-brain barrier; Adv. Drug Delivery Rev. 55, 151-164.
  • 436. Price G.J., Daw M.R., Newcombe N.J. i Smith P.P. (1990); Polymerization and copolymerization using high intensity ultrasound; Brit. Polym. J. 23, 63-66.
  • 437. Price G.J., Smith P.P. i West P.J. (1991); Ultrasonically initiated polymerization of methyl methacrylate; Ultrasonics 29, 166-170.
  • 438. Price G.J., Lenz E.J. i Ansell C.W.G. (2002); The effect of high-intensity ultrasound on the ring-opening polymerisation of cyclic lactones; Eur. Polym. J. 38, 1753-1760.
  • 439. Price G.J. (2003); Recent developments in sonochemical polymerisation; Ultrason. Sonochem. 10, 277-283.
  • 440. Kozicki M., Kujawa P. i Rosiak J.M. (2002); Pulse radiolysis study of diacrylate macromonomer in aqueous solution; Radial. Phys. Chem. 65, 133-139.
  • 441. Pantelis E., Karlis A.K., Kozicki M., Papagiannis P., Sakelliou L. i Rosiak J.M. (2004); Polymer gel water equivalence and relative energy response with emphasis on low photon energy dosimetry in brachytherapy; Phys. Med. Biol. 49, 3495-3514.
  • 442. Sandilos P., Angelopoulos A., Baras P., Dardoufas K., Karaiskos P., Kipouros P., Kozicki M., Rosiak J.M., Sakelliou L., Seimenis I. i Vlahos L. (2004); Dose verification in clinical IMRT prostate incidents; Int. J. Radial. Oncol. Biol. Phys. 59, 1540-1547.
  • 443. Pantelis E., Lymperopoulou G., Papagiannis P., Sakelliou L., Stiliaris E., Sandilos P., Seimenis I., Kozicki M. i Rosiak J.M. (2005); Polymer gel dosimetry close to an 125I interstitial brachytherapy seed; Phys. Med. Biol. 50,4371-4384.
  • 444. Pappas E., Petrokokkinos L., Angelopoulos A., Maris T.G., Kozicki M., Dalezios I. i Kouloulias V. (2005); Relative output factor measurements of a 5 mm diameter radiosurgical photon beam using polymer gel dosimetry; Med. Phys. 32, 1513-1520.
  • 445. Papagiannis P., Karaiskos P., Kozicki M., Rosiak J.M., Sakelliou L., Sandilos P., Seimenis I. i Torrens M. (2005); Three-dimensional dose verification of the clinical application of gamma knife stereotactic radiosurgery using polymer gel and MRI; Phys. Med. Biol. 50, 1979-1990.
  • 446. Rosiak J., Olejniczak J. i Charlesby A. (1988); Determination of the radiation yield of hydrogels crosslinking; Radial. Phys. Chem. 32, 691-694.
  • 447. Rosiak J.M. (1998); Gel/sol analysis of irradiated polymers; Radial. Phys. Chem. 51, 13-17.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0005-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.