PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelowanie i badanie erozji styków

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
PL
W pracy przedstawiono analizę i syntezę dotychczasowej wiedzy dotyczącej erozji styków współczesnych łączników energoelektrycznych niskiego napięcia w szerokim zakresie prądów, szczególnie silnoprądowym od l do 10 kA. Zostały opisane zjawiska determinujące erozję styków, opracowane na podstawie literatury światowej i krajowej, jak i własnych rozważań teoretycznych oraz licznych badań w zakresie prądów: małych do 100 A, średnich do l kA i dużych do 10 kA. Przedstawione zostały własne analizy struktury powierzchnii degradacji warstwy wierzchniej styków wskutek działania łuku elektrycznego oraz oryginalne badania migracji materiału styków. Autor monografii przedstawił modelowe ujęcie erozji styków za pomocą komputerowej symulacji i analizy procesu nagrzewania, topienia i parowania materiału styków pod działaniem łuku elektrycznego, przy czym główny nacisk położył na zagadnienia istotne w praktyce, mianowicie: określił minimalną i maksymalną erozyjność styku dla pojedynczego wyłączenia prądu, dla różnych materiałów, przy różnych rozkładach gęstości mocy łuku na powierzchni. Przeprowadził także analizę wpływu zależności temperaturowej współczynników fizycznych metalu na proces nagrzewania styku. Autor opracował także program do obliczania erozji elektrod UMS oraz zaproponował nową metodę wyznaczania dyfuzyjności cieplnej materiałów stykowych, potrzebnej do modelowania procesów cieplnych w stykach Uzyskane wyniki badań i obliczeń mają duże znaczenie praktyczne zarówno dla konstruktorów łączników elektrycznych, jak i specjalistów z inżynierii materiałowej w zakresie kompozytowych materiałów stykowych. Pozwolą one na udoskonalenie technologii wykonania kompozytowych materiałów stykowych, poprawę ich właściwości użytkowych i zwiększenie niezawodności eksploatacyjnej łączników elektroenergetycznych.
EN
The thesis contains the analysis and synthesis of existing knowledge about the erosion of contact materials, in the low voltage contemporary switchgears for wide range of currents especially from 1 kA to 10 kA. Basing on the, worldwide literature as well as on the author's theoretical and laboratory research and numerous results for low (up to 100 A), medium (up to 1 kA) and high current (to 10 kA) the effects determining contact erosion has been described. The work presents an analysis of the surface structure and degradation of the surface layer of contacts due to electric arc. The original tests of contact material migration is here presented. The author of the monography showed the model concept of erosion with the use of computer simulation and analysis of the process of heating, melting and vaporizing of contact materials which cause contact erosion influenced by electric arc. The main stress was laid on fundamental practical issues eg. determination of minimal and maximal contact erosion for a one cycle electric disconnection for various materials and different distribution of power arc density on the surface. The researcher studied the dependence of thermal properties of metal upon the process of contact heating. The author also worked out his own program for calculating UMS electrode erosion and offered a new method of marking contact thermal diffusion, essential to the modeling of thermal processes in contacts. The research results have a vital practical meaning both for switchgear constructors and for scientists specializing in material engineering for composite contact materials. The results should improve the technology of composite contact materials productions. It will help to improve their practical properties and increase the exploitation reliability of switchgear that is so important for the economy.
Słowa kluczowe
Rocznik
Tom
Strony
3--210
Opis fizyczny
Bibliogr. 184 poz., tab., wykr.
Twórcy
autor
  • Politechnika Łódzka
Bibliografia
  • [1] Abdel Asis M.: Auswirkung des Schaltlichtbogens auf Kupfer-Kontaktstuecke und Schaltfluessigkeiten beim Ausschalten von Wechselstromen von 1 bis 18 kA. Dissertation Thesis Braunschweig University, 1972
  • [2] Adamson A.W.: Physical chemistry of surfaces. IVth Edition, Wiley Int. Publ., N.Y. 1982.
  • [3] Alien S.E., Streicher E., Leung C.: Electrical Performance of Ag-W-C and Ag-WC-C contacts in switching tests. Proc. of 20th Int. Conf. on Electrical Contacts, Stockholm 2000, ss. 109-114.
  • [4] Amft D.: Arc movement regulated by plasma jets. Proc. of 20th Int. Conf. On Electrical Contacts, Stockholm 2000, ss. 103-108.
  • [5] Arnould J., Bonnin F., Guerlet J.P., Lambert C.: Some investigations about the behavior of a new silver - nickel oxide contact material. Proc. of 11th Int. Conf. On Electrical Contact Phenomena, Berlin 1982, ss. 217-221.
  • [6] Balme W., Braumann P., Schroder K.: Welding tendency, contact resistance and erosion of contact materials in motor vehicle relays. Proc. of 36th IEEE Holm Conf.on Electrical Contacts, 1990, ss. 79-84.
  • [7] Barin I., Knacke O.: Tchermochemical properties of inorganic substances. Springer-Verlag Berlin Heidelberg New York Verlag Stahleisen m.b.H. Duesseldorf 1973.
  • [8] Bauccio M.: ASM Engineered Materials Reference Book. 2nd edition, Mat. Park, OH, 1994.
  • [9] Behrens V., Michal R., Saeger K.E., Scheiner L.: Erosion mechanism of different Ag-Cu materials under arc load. Proc. of 6th Int. Conf. on Switching Arc Phenomena, Lodz 1989, ss. 290-294.
  • [10] Behrens V., Honig T., Kraus A., Lutz O.: Switching behaviour of silver based contact materials in 42VDC applications. Proc. of 21st Int. Conf. on Electrical Contacts, Zurich 2002, ss. 69-74.
  • [11] Behrens V., Honig T., Kraus A.: Silver/Metal Oxide contact materials as a substitute for silver/cadmium oxide on the background of upcoming legal restrictions in Europe. Proc. of 21st Int. Conf. on Electrical Contacts, Zurich 2002, ss. 457-461.
  • [12] Behrens V., Honig T., Lutz O., Spath D.: Substitute Contact Material for Silver/Cadmium Oxide in AC Applications in the Low Current Range. Proc. of 23rd Int. Conf. on Electrical Contacts, Sendai 2006, ss. 294-299.
  • [13] Behrens N., Bohm W.: Switching performance of different Ag/SnO2 contact materials made by powder metallurgy. Proc. of 11th Int. Conf. on Electrical Contact Phenomena, Berlin 1982, ss. 203-207.
  • [14] Belhachemi B., Carballeira A.: Influence of delay and duration of bounce on erosion weld ability and resistance in relay contacts. Proc. of 30th IEEE Holm Conference on Electrical Contacts, 1984, ss. 475-483.
  • [15] Belkin G.S., Kiselev V.Ya.: Electrode Erosion in Pulsed High-Current Discharges. Sov. Phys. Tech. Phys., VOL. 11(2), 1966, ss. 280-286.
  • [16] Belkin G.S.: Dependence of Electrode Erosion on Heat Flux and Duration of Current Flow. Sov. Phys. Tech. Phys., VOL. 15(7), 1971, ss. 1167-1170.
  • [17] Belkin G.S.: Methodology of Calculating Erosion of High Current Contacts During Action of an Electrical Arc. Trans. of Electrichestro, VOL. 1, FSTC-HT-0787-85,1972. ss. 61-64.
  • [18] Belkin G.S.: Methods of Approxima Calculations of Erosion Values of Electrodes in Discharges for Switching Large Pulse Currents. Fiz. Khim. Obrab.Mater., VOL. 1, 1974, ss. 33-39.
  • [19] Ben Jemaa N., Doublet L., Morin L., Jeannot D.: Break arc study for the new electrical level of 42V in automotive applications. Proc. of 47th IEEE Holm Conf. on Electrical Contacts, Montreal 2001, ss. 50-55.
  • [20] Ben Jemaa N., Doublet L., Schoepf Th.J., Hauner F., Jeannot D.: Arc Duration and Contact Erosion in an Automotive 42 VDC Network. Proc. of 50th Int. Relay Conf., Newport Beach/California 2002, ss. 5/1-5/7.
  • [21] Ben Jemaa N.: Material Performance for Automobile Contacts Development. Proc. of the Int. Conf. on Electromech. Comp. and their Applications, Nagoya 1999, ss. 75-82.
  • [22] Ben Jemaa N., Nedelec L., Benhenda S.: Break Arc Duration and Contact Erosion in Automotive Application. IEEE Trans. CPMT-Part A, March 1996, ss. 82-92.
  • [23] Binary Alloy Phase Diagrams - edited by Massalski T.B., Okamoto H., Subramanian P.R., Kacprzak L., 2nd edition, ASM Int. the Materials Information Society, 1990.
  • [24] Bolanowski B.: Bilans mocy luku prądu stałego niskiego napięcia ze szczególnym uwzględnieniem obszaru przykatodowego. Praca doktorska, PL, 1964.
  • [25] Bolanowski B., Sobieszczuk A.: Ein neues Model des Katodenfusses des elektrischen Lichtbogens. Proc. of 2nd Int. Conf. on Switching Arc Phenomena, Lodz 1973. ss. 11-16.
  • [26] Bolanowski B.: Niekatoryje woprosy impulsnoj modeli prikatodnoj zony elektriczeskoj dugi. Izwiestija Sibirskowo Otdielenija Akademii Nauk SSSR, nr 8, 1979, ss. 25-30.
  • [27] Bolanowski B., Holi A.: Elementary discharge process on an ozide-coated cathode. Proc. of 4rd Int. Conf. on Switching Arc Phenomena, Lodz 1981, ss. 35-40.
  • [28] Bolanowski B.: Introduction to the analytical determination of contact mass loss. Proc. of 6th Int. Conf. on Switching Arc Phenomena, Lodz 1989, ss. 279-285.
  • [29] Bolanowski B.: Gęstość prądu w plamce katodowej oraz pole temperaturowe w katodzie łuku elektrycznego. Praca habilitacyjna, PL, 1967.
  • [30] Borkowski P.: Zjawiska cieplno-erozyjne w silnoprądowych zestykach z materiałów kompozytowych. Praca doktorska, PL 1999.
  • [31] Borkowski P., Walczuk E.: Temperature rise behind fixed polarity Ag-W contacts opening on an half cycle of high current and its relationship to contact erosion. Proc. of Joint 22nd ICEC & 50th IEEE Holm Conf. on Electrical Contacts, Seattle/Washington 2004, ss. 334-340.
  • [32] Borkowski P., Walczuk E.: Influence of contact diameter no arc erosion of the polarized contacts at high current conditions. Proc. of 10tn Int. Conf. on Switching Arc Phenomena, Lodz 2005, ss. 111-115.
  • [33] Borkowski P., Walczuk E., Wysocki T.: Komputerowy program zautomatyzowanego stanowiska pomiarowego do badań erozji i rezystancji styków. III Konferencja Naukowo-Techniczna Zastosowania Komputerów w Elektrotechnice, Poznań/Kiekrz 1998, ss. 217-222.
  • [34] Borkowski P., Walczuk E.: Komputerowy pomiar temperatury styków nagrzewanych łukiem przy wyłączaniu prądu. V Konferencja Zastosowanie Komputerów w Elektrotechnice, Poznań/Kiekrz 2000, ss. 411-417.
  • [35] Borkowski P., Boczkowski D.: Computer-aided testing of contacts on switching high current. Archives of Electrical Engeneering, PAN w Warszawie, VOL. LIV, No. 3, 2005, ss. 253-263.
  • [36] Borkowski P., Boczkowski D., Wysocki T.: Computer-controlled system for testing contacts on switching high current. Journal of Measurement, ELSEYTER, VOL. 40/3, 2007, ss. 294-299.
  • [37] Borkowski P.: A computer program for the calculation of electrode mass loss under electric arc conditions. The 23rd ICEC, together with IS-EMD, Sendai 2006, ss. 354-360.
  • [38] Borkowski P., Hasegawa M.: A computer program for the calculation of electrode mass loss under electric arc conditions. IEICE Transactions on Electronics, Japan, VOL. E90-C, No. 7, July 2007, ss. 1369-1376.
  • [39] Borkowski P., Walczuk E.: Introduction to computer simulation of thermal influence of electric arc on contacts during breaking of high currents. Proc. of 3rd IC-ECAAA, Xi'an 1997, ss. 206-211.
  • [40] Borkowski P., Walczuk E.: Review of models of thermal influence of electrical arc on contact at breaking of current in air. Proc. of 8* Int. Conf. SAP&ETEP, Łódź 1997, ss. 230-236.
  • [41] Borkowski P.: Preliminary computer simulation of thermal influence of electric arc on contact during breaking of high current. Proc. of 8* Int. Conf. SAP&ETEP, Łódź 1997, ss. 237-241.
  • [42] Borkowski P., Walczuk E.: Thermal Models of Short Arc between High Current Contacts. Proc. of 47* IEEE Holm Conf. on Electrical Contacts, Montreal 2001, ss. 259-264.
  • [43] Borkowski P.: Arc Erosion of Contacts on Switching High Current. Archives of Electrical Engineering, PAN w Warszawie, VOL. LIII, No. 3, 2004, ss. 259-287.
  • [44] Borkowski P.: Computer simulation of thermal processes in conducts and arc erosion of silver-tungsten composite materials. Proc. of 10* Int. Conf. on Switching Arc Phenomena, Łódź 2005, ss. 96-101.
  • [45] Borkowski P.: Thermal Models of Short Arc for Contact Opening on an Half Cycle of High Current. Archives of Electrical Engineering, PAN w Warszawie, VOL. LIV, No. l, 2005, ss. 109-122.
  • [46] Borkowski P.: Computer simulation of thermal processes in contacts and arc erosion of silver-tungsten composite materials. Archives of Electrical Engineering, PAN w Warszawie, VOL. LVI, No. l, 2007, ss. 89-98.
  • [47] Braumann P., Koffler A.: The influence of manufacturing process, metal oxide content, and additives on the switching behaviour of AgSnO2 in relays. Proc. of 50* IEEE Holm Conf. on Electrical Contacts, the 22nd ICEC, Seattle/Washington 2004, ss. 90-97.
  • [48] Carrou E., Ben Jemaa N.: Electrical arc study in the range of 14-112VDC for automotive power contacts. Proc. of 23rd Int. Conf. on Electrical Contacts, Sendai 2006, ss. 28-33.
  • [49] Chabrerie J.P., Devautour J., Gouega A.M., Teste P.: A sensitive device for the measurement of the force exerted by the arc on the electrodes. IEEE Transactions on Components, Packaging and Manufacturing Technology, Part A. VOL. 18, No. 2, June 1995, ss. 322-328.
  • [50] Chabrerie J.P., Haidar J., Manenc L., Minoo H.: Experimental study of force acting on arc electrodes. Proc. of 14th Int. Conf. on Electrical Contacts, Paris 1988, ss. 327-332.
  • [51] Chen Z., Sawa K.: Particle sputtering and deposition mechanism for material transfer in breaking arcs. Journal of Applied Physics, VOL. 76, No. 6, 1994, ss. 3326-3331.
  • [52] Chen Z., Sawa K.: Effect of arc behaviour on material transfer: A review. Proc. of 42nd IEEE Holm Conf. on Electrical Contact, 1996, ss. 238-250.
  • [53] Chen Z., Mizukoshi H., Sawa K.: Contact erosion patterns of Pd material in dc breaking arcs. IEEE Trans Components, Packaging and Manufacturing Technology - Part A 17 (1): 1994, ss. 61-67.
  • [54] Chen Z.K., Witter G.: Development of Cadmium-Free Contact Material for AC Wall Switch Applications. Proc. of 23rd Int. Conf. on Electrical Contacts, Sendai 2006, ss. 549-553.
  • [55] Ciok Z.: Procesy łączeniowe w układach elektroenergetycznych. WNT w Warszawie, 1983.
  • [56] Commission of the European Union: Vorschlag fuer eine Richtlinie des europaischen Parlamentes und des Rates zur Beschrankung der Verwendung bestimmter gefahrlicher Stoffe in elektrischen und elektronischen Geraten (2000/0158 (COD) and 2000/0159 (COD)), Briissel, June 2000.
  • [57] Cramer K.R., Roman W.C.: "Electrode Design Based on Transient. Thermal Analysis", Proc. of the ASME Winter Annual Meeting, Los Angeles/California 1969, ss. 1-3.
  • [58] Cygański A.: Metody spektroskopowe w chemii analitycznej. WNT, wyd.. III Warszawa 2002.
  • [59] David R. Lide: Handbook of chemistry and physics, CRC Press, Boca Raton, Florida, USA, 79th edition, 1998.
  • [60] Dixon W., McCallen R.C., Kang S.W., Hawke R.S.: Radiation Induced Ablation for Various Railgun Materials. LLNL Report: # UCID-20902, Oct. 31, 1986.
  • [61] Dobrzański L., Nowosielski R.: Metody badań metali i stopów. Skrypty uczelniane, PS, 1986.
  • [62] Donaldson A.L.: Electrode erosion in high currenl, high energy Iransienl arcs. Doclor Thesis, Texas Tech University (Departmenl of Electrical Engineering), 1990.
  • [63] Donaldson A.L., Kristiansen E., Kristiansen M., Watson A., Zinsmeyer K.: Electrode Erosion in High Current, High Energy Spark Gaps, IEEE Trans. On Magnetics, VOL. T-MAG-22, 1986, ss. 1441-1447.
  • [64] Doublet L., Ben Jemaa N., Mitchell J.B.A., Jeannot D., Hauner F.: Erosion and material transfer under 42V direct current. Proc. of 21st Int. Conf. on Electrical Contacls, Zurich 2002, ss. 62-68.
  • [65] Doublet L., Ben Jemaa N., Hauner F., Jeannot D.: Electrical arc phenomena and its interaction on contact material at 42Volts DC for automotive applications. Proc. of 50th IEEE Holm Conf. on Electrical Contacts, the 22nd ICEC, Seattle/Washington 2004, ss. 8-14.
  • [66] Dubravec B.: Degradation and erosion of contacts AgCdO-15 and AgSnO2-12 heated by switching arcs at arcing times 2,5 ms and 1ms. Proc. of 7th Int. Conf. On Switching Arc Phenomena, Lodz 1993, ss. 250-255.
  • [67] Dzierzbicki S.: Wyłączniki wysokonapięciowe prądu przemiennego. WNT w Warszawie, 1966.
  • [68] Lefort A., Guillot J.P.: Measurement of pressure forces at arc-root level. Proc. Of 6th Int. Conf. on Switching Arc Phenomena, Lodz 1989, ss. 332-335.
  • [69] Ecker G.: Electrode Components of the Arc Discharge. Ergebnisse der Exaakten Naturwissenchaften, VOL. 33, 1961, ss. 1-104.
  • [70] Enciklopedia nieorganiczeskich materalow. T. 1 i 2, GRUSE, Kijow 1977.
  • [71] Engel T.G., Wester S.L., Kristiansen M., Donaldson A.L.: Review of the Mechanisms of Electrode and Insulator Erosion and Degradation in High Current Arc Environments. IEEE Trans. on Magnetics, VOL. 31, No. 1, 1995, ss. 709-713.
  • [72] Gengenbach B., Mayer IL, Michal R., Saeger K.E.: Investigation on the Switching Behavior of AgSnO2 Materials in Commercial Contactors. IEEE Trans. Comp., Hybrids, Manuf. Technol., VOL. CHMT-8, No. 1, 1985, ss. 58-63.
  • [73] Gengenbach B., Mayer IL, Michal R., Saeger K.E.: Investigations on the switching behaviour of AgSnO2 materials in a commercial contactor. Proc. of 30th IEEE Holm Conf. on Electrical Contacts, 1984, ss. 243-247.
  • [74] Gengenbach B., Jager K.W., Mayer IL, Saeger K.E.: Mechanism of arc erosion on silver - tin oxide contact materials. Proc. of 11th Int. Conf. on Electrical Contact Phenomena, Berlin 1982, ss. 208-211.
  • [75] Gengenbach B., Michal R., Horn G.: Erosion characteristics of silver based contact materials in a DC contactor. Proc. of 30th IEEE Holm Conf. on Electrical Contacts, 1984, ss. 201-207.
  • [76] Goloveiko A.G.: Thermal Processes at the Anode During An Intense Pulsed Discharge. Sov. J. of Eng. Phys., VOL. 15(6), 1968, ss. 1000-1009.
  • [77] Gremer L., Boyle W.: Two distinct types of short arcs. J. Applied Physics, VOL. 27, 1954, ss. 32-39.
  • [78] Gremmel H.: Das Abbrandverhalten der Elektroden von Starkstromlichtbogen bei kurzer Lichtbogendauer. Dissertation Thesis, Braunschweig University, 1963.
  • [79] Hauner F., Jeannot D., McNeilly K., Pinard J.: Advanced AgSnO2 contacts materials for high current contactors. Proc. of 20th Int. Conf. on Electrical Contacts, Stockholm 2000, ss. 193-198.
  • [80] Hauner F., Jeannot D., McNeilly K.: Advanced AgSnO2 contact materials with high total oxide content. Proc. of 21st Int. Conf. on Electrical Contacts, Zurich 2002, ss. 452-456.
  • [81] Herz K., Sauter E.: Erosion, welding and contact resistance characteristics of several powder matallurgical silver contact materials. Proc. of 30th IEEE Holm Conf. on Electrical Contacts, 1984, ss. 215-221.
  • [82] Hodgman Ch.D.: Handbook of Chemistry and Physics, 40th edition, Chemical Rubber Publishing Co., Cleveland, Ohio 1959.
  • [83] Holmes R.: Electrode Phenomena chapter 11 in Electric Breakdown of Gases , s. 839-867. Ed. by Meek J.M., Craggs J.D., Wiley J., New York 1978.
  • [84] Holm R.: Electric contacts, Springer-Verlag, Berlin-Heidelberg-New-York, 1967.
  • [85] Hoft H.: Bestimmungsgrossen des abschaltlichtbogens. Proc. of 7th ICECP, Paryż 1974, ss. 273-279.
  • [86] Jeannot D., Pinard J. i in.: The Effect of Metal Oxide Additions or Dopants on the Electrical Performance of AgSnO2 Contact Materials. Proc. of 39th IEEE Holm Conf. on Electrical Contacts, 1993, ss. 51-59.
  • [87] Kaliszuk K., Frydman K., Walczuk E., Borkowski P., Jakubowski J.: Arc erosion phenomena in tungsten-silver composite contact materials. Proc. of 20th Int. Conf. on Electrical Contacts, Stockholm 2000, ss. 281-289.
  • [88] Kaliszuk K., Frydman K., Wojcik-Grzybek D., Bucholc W., Walczuk E., Borkowski P., Zasada D.: SEM study of WC-Ag contact surface after arc testing. Proc. of 21st Int. Conf. on Electrical Contacts, Zurich 2002, ss. 471-478.
  • [89] Kaliszuk K., Frydman K., Wojcik-Grzybek D., Bucholc W., Walczuk E., Borkowski P., Zasada D.: Arc erosion tests and study of surface of Ag-WC contacts after arc switching operations. Proc. of Joint 22nd ICEC & 50th IEEE Holm Conf. on Electrical Contacts, Seattle/Washington 2004, ss. 75-84.
  • [90] Kaliszuk K., Senkara J.: Wpływ struktury materiału stykowego W-Ag na charakter zniszczeń erozyjnych przy pracy zwarciowej. Materiały Elektroniczne nr2, 1994, ss. 61-67.
  • [91] Kaliszuk K., Senkara J., Wehr A.: Erossion Mechanism of W-Ag Contact Material in the Air-Blast Circuit Breaker under the Short-Circuit Conditions. Proc. of 17th Int. Conf. on Electrical Contacts, Nagoya 1994, ss. 531-537.
  • [92] Kaliszuk K., Frydman K., Wojcik-Grzybek D., Walczuk E., Borkowski P., Zasada D.: SEM study of W-Ag contact tips after electric arc testing. Proc. of 9th Int. Conf. on Switching Arc Phenomena, Lódź 2001, ss. 209-212.
  • [93] Kang S., Brecher C.: Cracking Mechanisms in Ag-SnO2 Contact Materials and their Role in the Erosion Process. IEEE Trans. Comp., Hybrids, Manuf. Technol., VOL. CHMT-12, No. 1, March 1989.
  • [94] Karniewicz J., Sokołowski T.: Podstawy fizyki laboratoryjnej, Łódź 1996.
  • [95] Kejian W., Qiping W.: Erosion of silver-base material contacts by breaking arcs. Proc. of 36th IEEE Holm Conf. on Electrical Contact, 1990, ss. 44-48.
  • [96] Kharin S.N.: Thermocapillary mechanism of erosion during arcing. Proc. of 36th IEEE Holm Conf. on Electrical Contact, 1990, ss. 37-43.
  • [97] Kharin S.N.: Transient Thermophysical Phenomena at the Pre-arcing Period During opening of Electrical Contacts, Proc. of 37th IEEE Holm Conf. on Electrical Contacts, Chicago 1991, ss. 53-65.
  • [98] Koffler A., Braumann P., Kempf B.: The influence of Manufacturing Process, MetalOxide Content, and Additives on Switching Behavior of AgSnO2 in DC. Proc. of 23rd Int. Conf. on Electrical Contacts, Sendai 2006, ss. 288-293.
  • [99] Kołaciński Z.: Zjawiska cieplne determinujące ponowny zapłon łuku krótkiego w łącznikach niskiego napięcia. Praca habilitacyjna PL, 1983.
  • [100] Kołaciński Z.: Thermodynamics of short-arc plasma. Warszawa 1989.
  • [101] Kordas R., Łapiński A.: A model of the interaction between contact material of the AgCdO type and the cathode spot of electric arc. Proc. of 30th IEEE Holm Conf. on Electrical Contacts, 1984, ss. 249-256.
  • [102] Krupman L.I., Bakhcheev N.F., Gorbakovskii E.M., Shveikin S.M., Korotkikh V.F., Gabronskii B.V., Nogtev V.P.: Development and use of nonexplosive slagging compositions to top-pour steel. Metallurg, No. 11, November 1984, ss. 24-25.
  • [103] Lee, S.: Energy balance and the radius of electromagnetically pinched plasma columns. Plasma Physics, VOL. 25, Issue 5, 1983, ss. 571-576.
  • [104] Leung C.H., Lee A.: Contact erosion in automotive dc relays. IEEE Trans. Components, Hybrids and Manufacturing Technology, VOL. CHMT-14, 1991, ss. 101-108.
  • [105] Leug C.H., Kim H.: A comparison of Ag-W, Ag-WC and Ag-Mo contacts. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, VOL. CHMT-7, March 1984, ss. 69-75.
  • [106] Li Z., Wu X., Nouri H.: Sputter Erosion Model of Arcing Contact Materials. Proc. of 23rd Int. Conf. on Electrical Contacts, Sendai 2006, ss. 272-277.
  • [107] Lindmayer M., Roth M.: Contact resistance and arc erosion of W/Ag and WC/Ag. Proc. of 9th ICECP and Holm Conf. on Electrical Contacts, Chicago 1978, ss. 421-430.
  • [108] Lutz F.: Erosion of copper electrodes for great arc lengths and currents up to 24 kA. Proc. of 11th ITK, Berlin 1982, ss. 32-36.
  • [109] Malenkov G.G., Frank-Kamenetskii M.M., Grivtsov A.G.: A dynamic hydrogen-bond criterion in the numerical simulation of water. Zhurnal Strukturnoi Khimii, VOL. 28, No. 2, March-April 1987, ss. 81-85.
  • [110] Malinowska E.: Zjawiska przedłukowe w elektroenergetycznych łącznikach próżniowych. Praca doktorska, PL, 1990.
  • [111] Małyszew W.M., Rumiancew D.W.: Sierebro. Wyd. 2, Moskwa, Metallurgija, 1987.
  • [112] Manhart H., Rieder W.: Arc mobility on new and eroded AgCdO and AgSnO2 contacts. Proc. of 34th IEEE Holm Conf. on Electrical Contacts, 1988, ss. 47-56.
  • [113] Marusik M.: Dynamika wyładowania elementarnego łuku krótkiego. Praca doktorska, PL, 1982.
  • [114] McBride J.W., Sharkh S.M.: The influence of contact opening velocity on arc erosion. Proc. of 16th ICEC, UK, September 1992, NEMA Part ICS 2-321, ss. 395-400.
  • [115] McClure G.: Plasma expansion as a cause of metal displacement in Vacuum-arc cathode spots. Journal of Applied Physics, 1974, ss. 2078-2084.
  • [116] Michal R., Seager K.E.: Metallurgical Aspects of Silver-Based Contact Materiale for Air-Break Switching Devices for Power Engineering. IEEE Trans. Comp., Hybrids, Manuf. Technol., VOL. CHMT-12, No. 1, March 1989.
  • [117] Morin L., Ben Jemaa N., Jeannot D., Pinard J., Nedelec L.: Material transfer and welding in automotive power switches and relays. Proc. of 20th Int. Conf. On Electrical Contacts, Stockholm 2000, ss. 397-402.
  • [118] Nadziakiewicz J.: Labolatorium techniki cieplnej. Politechnika Śląska 1995.
  • [119] Nilsson O., Hauner F., Jeannot D.: Replacement of AgCdO by AgSnO2 in DC contactors. Proc. of 50th IEEE Holm Conf, on Electrical Contacts, the 22nd ICEC, Seattle 2004, ss. 70-74.
  • [120] Osadin B.A.: Erosion of the Anode in a Heavy-Current Discharge in Vacuum. High Temperature Phys. (USSR), VOL. 3(6), 1965, ss. 849-854.
  • [121] Parvanov P.: Untersuchung des Kontaktebbrandes in Abhangigkeit vom Ausschaltzeitpunkt Innerhalb Einer Stromhalbschwingung. Proc. of 8th Int. Conf. On Electrical Contact Phenomena, Tokyo 1976, ss. 38-40.
  • [122] Petr R.A., Burknes T.: Erosion of spark electrodes. IEEE Trans. on Plasma Science 1980, ss. 149-153.
  • [123] Peuker C., Hauner F.: Influence of microstructure on the switching behaviour of AgC. Proc. of 9th Int. Conf. on Switching Arc Phenomena, Lodz 2001, ss. 213-218.
  • [124] Ponomarenko V.G., Bei V.I., Kurland Yu.A., Potebnya G.F., Belomytsev S.N.: Calculation of the thickness of a viscous liquid film entrained by a rotating roller with a smooth or ribbed surface. Zhurnal Khimicheskoe i Neftyanoe Mashinostroenie, April, 1979, No. 4, ss. 17-19.
  • [125] Pucher W.: Elektrie, 19, 9, 362, 1965.
  • [126] Rakhovskii V.I., Yagudaev AM.: Elektrode erosion mechanism in a pulsed vacuum discharge. Sov. Phys. Tech. Phys., VOL. 14(2), 1969, ss. 227-230.
  • [127] Raezer S.D.: Heat Transfer in Rotated Arcs with Water-Cooled Electrodes. John Hopkins University Applied Physics Laboratory, Report # CF-2957, Dec. 5, 1961.
  • [128] Rieder W., Weichsler V.: Make erosion on Ag/SnO2 and Ag/CdO contacts in comercial contactors. Proc. of 36th IEEE Holm Conf. on Electrical Contact, 1990, ss. 110-116.
  • [129] Rumszyski L.Z.: Matematyczne opracowanie wyników eksperymentu. WNT, Warszawa 1973.
  • [130] Sakaguchi O., Takahashi K., Yamamoto T.: Performance investigation of contact material in 42VDC automotive relay. Proc. of 21st Int. Conf. on Electrical Contacts, Zurich 2002, ss. 56-61.
  • [131] Sallais D., Ben Jemaa N., Perrin A., Heraud T., Jeannot D, Bourda C.: New silver-oxide composites to reduce break arc duration and its subsequent damages. Proc. of 23rd Int. Conf. on Electrical Contacts, Sendai 2006, ss. 278-283.
  • [132] Schoepf T.J., Behrens V., Honig T., Kraus A.: Development of Silver Zinc Oxide for General-Purpose Relays. Proc. of 20th Int. Conf. on Electrical Contacts, Stockholm 2000, ss. 187-192.
  • [133] Schoepf T.J.: Electrical contacts in the automotive 42VDC powernet. Proc. of 21st Int. Conf. on Electrical Contacts, Zurich 2002, ss. 43-55.
  • [134] Schroder K.H.: The Future of Electrical Switching Contacts under the Influence of Electronics. Proc. of 21st Int. Conf. on Electrical Contacts, Zurich 2002, ss. 196-204.
  • [135] Schroder K.H.: Abbrandverhalten offnender Kontaktstiicke bei Beanspruchung durch magnetisch abgelenkte Starkstromlichtbogen. Dissertation Thesis Braunschweig University, 1967.
  • [136] Schroder K.H.: Development of contact materials for power engineering in Europe. Proc. of 33rd IEEE Holm Conf. on Electrical Contacts, 1987, ss. 163-173.
  • [137] Schroder K.H.: Silver-metaloxides as contact material. Proc. of 13th Int. Conf. On Electrical Contacts, Lausanne, 1986, ss. 186-194.
  • [138] Senkara J.: Analiza zjawiska wtórnego spiekania kompozytowych materiałów stykowych typu metal-metal w łuku elektrycznym. Materiały Elektroniczne nr 3, 1987, ss. 7-15.
  • [139] Senkara J.: Wpływ antymonu na zjawiska powierzchniowe w procesie wytwarzania kompozytu W-CuSb. Prace naukowe ITME, 1983, ss. 10-16.
  • [140] Senkara J.: Sterowanie energią. adhezji pomiędzy molibdenem i wolframem a ciekłymi metalami w procesach spajania. Praca habilitacyjna, PW, Mechanika, 1993.
  • [141] Shea J.J., Zhou X.: Contact material and arc current affect on post-current zero contact surface temperature. Proc. of 50th IEEE Holm Conf. on Electrical Contacts, the 22nd ICEC, Seattle/Washington 2004, ss. 326-333.
  • [142] Shen Y.S., Gould L., Swann S.: DTA and TGA studies of four Ag-MeO electrical contact materials. IEEE Trans. Comp., Hybrids, Manuf. Technol., VOL. CHMT-8, No. 3, Sept. 1985, ss. 352-358.
  • [143] Slade P.G. (editor): Electrical contacts: principles and applications. Marcel Dekker, Inc., New York, Basel 1999.
  • [144] Slade P.G.: High current contacts: a review and tutorial. Proc. of 21st Int. Conf. On Electrical Contacts, Zurich 2002, ss. 413-424.
  • [145] Slade P.G., Kossowsky R.: Effect of surface structure on contact resistance as a function of operating life in Ag-W contacts. Proc. of 7th ICECP, Chicago 1974, ss. 201-206.
  • [146] Slade P.G.: Variations in contact resistance resulting from oxide formation and decomposition in Ag-W and Ag-WC-C contacts passing steady currents for long time periods. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, VOL. CHMT-9, No. 1, March 1986, ss. 3-16.
  • [147] Slade P.G., Chien Y.K., Bindas J.A., Hoyer N.: Contact resistance variations in high silver content, silver-refractory carbide contacts. Proc. of 13* ICEC, Lausanne 1986, ss. 216-220.
  • [148] Sobieszczuk A.: Synteza zjawisk cieplnych na katodzie łuku elektrycznego w świetle aktualnego stanu badań nad wyładowaniami elementarnymi. Prace Naukowe PL, Nr 146,1985.
  • [149] Sone H., Takagi T.: Role of the metallic phase arc discharge on arc erosion in Ag contacts. IEEE Trans. Comp., Hybrids and Manufacturing Technology 1990, ss. 13-19.
  • [150] Stock D., Seeger J.: A new copper-alloy for connector applications combining high electrical conductivity and high strength. Proc. of 21st Int. Conf. on Electrical Contacts, Zurich 2002, ss. 326-328.
  • [151] Streicher E., Leung C., Bevington R., Alien S.: Press-Sinter-Repress Ag/SnO2 Contacts with Lithium and Copper Sintering Additives for Contactor Applications. Proc. of 47th IEEE Holm Conf. on Electrical Contacts, Montreal 2001, ss. 27-34.
  • [152] Szumer A.: Podstawy ilościowej mikroanalizy rentgenowskiej. WNT, Warszawa 1994.
  • [153] Takahashi K., Sakaguchi O., Yamamoto T., Inaoka H.: Investigation of contact materials in 42VDC automotive relay. Proc. of 50th IEEE Holm Conf. on Electrical Contacts, the 22nd ICEC, Seattle/Washington 2004, ss. 22-27.
  • [154] Tarczyński W.: Strumienie plazmy w łuku prądu przemiennego. Praca doktorska PL, 1977.
  • [155] Tschalakoff I.: EinfluB der Abmessungen und der Kontaktoffnung von Abhebekontaktstucken auf den Kontaktabbrand. Elektrie, Bd.23, 1969, ss. 287-288.
  • [156] Turner H.W.: Discontinuous contact erosion. Proc. of 3rd Int. Research Symposium on Electrical Contact Phenomena, University of Maine, 1966, ss. 309-320.
  • [157] Walczuk E., Borkowski P.: Opracowanie modeli mechanizmów fizycznych i badanie eksperymentalne erozji spolaryzowanych styków z materiałów kompozytowych w zakresie dużych prądów. Grant KBN Nr 4 T10A 029 24. Decyzja Nr 1145/T10/2003/24. Kierownik projektu: Walczuk E. Główny wykonawca: Borkowski P.
  • [158] Walczuk E., Borkowski P., Frydman K., Wojcik-Grzybek D., Bucholc W.: Migration of composite contact materials components at high current arcing. Proc. of 23rd ICEC, together with IS-EMD, Sendai 2006, ss. 143-149.
  • [159] Walczuk E., Borkowski P., Frydman K., Wójcik-Grzybek D., Bucholc W., Hasegawa M.: Migration of composite contact materials components at high current arcing. IEICE Transactions on Electronics, Japan, VOL. E90-C, No. 7 July 2007, ss. 1377-1384.
  • [160] Walczuk E., Borkowski P.: Badania podstawowe mechanizmu erozji łukowej i właściwości fizycznych kompozytowych materiałów stykowych wolfram-srebro przeznaczonych do niskonapięciowych wyłączników. Grant KBN Nr 8 T10A 069 10, 1998. Kierownik projektu: Walczuk E. Główny wykonawca: Borkowski P.
  • [161] Walczuk E., Borkowski P., Kaliszuk K., Frydman K.: Effect of composition and microstructure on the arc erosion and contact resistance for tungsten-silver composite materials at high currents. Proc. of 20th Int. Conf. on Electrical Contacts ICEC2000, Stockholm 2000, ss. 259-266.
  • [162] Walczuk E., Borkowski P., Kaliszuk K., Frydman K., Wójcik-Grzybek D., Bucholc W.: Arc erosion and contact resistance of WC-Ag high-current contacts. Proc. of 21st Int. Conf. on Electrical Contacts, Zurich 2002, ss. 479-485.
  • [163] Walczuk E., Borkowski P., Boczkowski D,, Wójcik-Grzybek D., Frydman K., Kaliszuk K., Bucholc W.: Arc erosion and contact resistance of Ag-Fe and Ag-Fe2O3 contacts materials. Proc. of 10th Int. Conf. on Switching Arc Phenomena, Łódź 2005, ss. 123-128.
  • [164] Walczuk E.: Arc erosion of high current contacts in the aspect of CAD of switching devices. Proc. of 38th IEEE Holm Conf. on Electrical Contacts, Philadelphia 1992, ss. 1-16.
  • [165] Walczuk E., Kaliszuk K.: Materialy AgSnO2. Nie publikowane.
  • [166] Walczuk E., Stolarz S., Wojtasik K.: Experimental study of Ag-A-Re composite materials under high-current conditions. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, VOL. CHMT-10, No. 2, June 1987, ss. 283-289.
  • [167] Walczuk E., Stolarz S.: Investigations of technical properties of Ag/W contacts materials for the moulded case circuit breakers. Proc. of 11th ITK, Berlin 1982, ss. 180-184.
  • [168] Walczuk E., Stolarz S.: Investigations of technical properties of Ag/W contact materials for the moulded case circuit breakers. Proc. of 11* Int. Conf. on Electrical Contact Phenomena, Berlin 1982, ss. 180-188.
  • [169] Walczuk E., Btaszczyk H.: Dynamic Voltage-Current Characteristic of Short Arc At Higher Currents. Proc. of 13th ICEC, Lausanne 1986, ss. 1701-1705.
  • [170] Walczuk E., Błaszczyk H., Boczkowski D.: Computer-aided investigations of arc erosion characteristics and contact resistance. Proc. of 7th Int. Conf. on Switching Arc Phenomena, Łódź 1993, ss. 274-280.
  • [171] Walczuk E., Boczkowski D., Borkowski P.: Komputerowy system pomiaru drogi styków w stanowisku probierczym do badań modelowych erozji łukowej styków. IX Konferencja Zastosowanie Komputerów w Elektrotechnice, Poznań/Kiekrz 2004, ss. 251-253.
  • [172] Watson A.: Electrode damage from strong transient arcs due to surface material displaced by hydromagnetic flow, I-Basic Principles, to be resubmitted to the J. of Applied Physics.
  • [173] Watson A., Donaldson A.L., Ikuta K., Kristiansen M.: Mechanism of Electrode Surface Damage and Material Removal in High Current Discharges. IEEE Trans. on Magnetics, VOL. T-MAG-22, 1986, ss. 1779-1803.
  • [174] Wdzięczny L.: Opracowanie programu do obliczania ubytku masy styków wskutek działania łuku elektrycznego. Praca dyplomowa, PL, 2004.
  • [175] Weast R.C., et al eds.: CRC Handbook of Chemistry and Physic. 70th Edition, CRC Press Inc., Boca Rotan, Florida 1990.
  • [176] Wingert P., Kim H.J.: Development of the arc - induced erosion surface in silver - cadmium oxide. Proc. of 30* IEEE Holm Conf. on Electrical Contacts, 1984, ss. 223-228.
  • [177] Wingert Ph.C.: The detection and effects of oxide layers on silver-refractory contact surfaces 43rd IEEE Holm Conf. on Electrical Contacts, Philadelphia 1997, ss. 104-114.
  • [178] Witter G., Chen Z.: A comparison of silver tin indium oxide contact materials using a new model switch that simulates operation of an automotive relay. Proc. Of 50th IEEE Holm Conf. on Electrical Contacts, the 22nd ICEC, Seattle 2004, ss. 382-387.
  • [179] Witter G., Chen Z.: A comparison of the effects of opening speed, contact gap and material type on electrical erosion for relays interrupting inductive automotive loads. Proc. of 23rd Int. Conf. on Electrical Contacts, Sendai 2006, ss. 17-21.
  • [180] Wojtasik K., Missol W.: Investigation of the silver based composite contact materials, Proc. of 9th Int. Conf. on Switching Arc Phenomena, Łódź 2001, ss. 219-223.
  • [181] Yanagihara N., Sakaguchi O., Yamamoto T.: Development of AgNi contact material. Proc. of 23rf Int. Conf. on Electrical Contacts, Sendai 2006, ss. 266-271.
  • [182] Zien T.F.: Integral Solutions of Ablation Problems with Time Dependent Heat Flux. AIAA Journal, VOL. 16(12), 1978, ss. 1287-1295.
  • [183] Zingerman A.G.: Thermal Theory of the Electrical Erosion of Metals. Trans. Of Izvestiya Vyssykh Uchebnytch Azvedeniy-Eleckcrosiekhaitika, VOL. 5(1), 1960, ss. 87-98.
  • [184] Zolotykh B.N.: The Nature of Energy Transfer to Electrodes in a Pulse Discharge with Small Gaps. In the book: Electrical Contacts, M: Energy, NASA-TTF-339, 1964, ss. 5-20.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0005-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.