PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Efekty histerezowe w tarciu suchym

Autorzy
Identyfikatory
Warianty tytułu
EN
Hysteretic effects in dry friction
Języki publikacji
PL
Abstrakty
PL
W pracy rozważane są zjawiska zachowania histerezowego siły tarcia suchego obserwowanej podczas badań eksperymentalnych. Na podstawie analiz doświadczalnych i teoretycznych postuluje się, że takie zachowanie można uważać za pewną reprezentację dynamiki układu. Zgodnie z takim założeniem, wprowadza się nową klasyfikację modeli siły tarcia, dzieląc je ze wzglę du na ich wrażliwość na charakter ruchu układu. Dyskutowane są ogólne zagadnienia modelowania zjawisk towarzyszących tarciu suchemu oraz zaproponowany jest nowy, prosty lecz efektywny w implementacji numerycz- nej model sily tarcia, zdolny odzwierciedlić efekty histerezowe. Pokazane są wyniki eksperymentalne i ich porównanie z symulacjami numerycznymi zaproponowanego modelu i z wybranymi modelami klasycznymi. W części wstępnej zawarto ogólny opis zjawiska tarcia i historii ba- dań w tej dziedzinie oraz przedstawiono tezę pracy oddającą związek siły tarcia z charakterem ruchu realizowanego przez układ drgający. Przedmiotem rozważań w rozdziale drugim jest opis najbardziej istotnych zagadnień dotyczących tarcia opracowany w kontekście nawiązującym bezpośrednio do układu rzeczywistego będącego przedmiotem badań eksperymentalnych. Największy nacisk położono na takie zagadnienia, jak efekty histerezowe, siłę zrywającą oraz krzywą Stribecka. Są to główne cechy charakteryzujące proponowany w treści rozdziału 5 nowy model tarcia. W rozdziale trzecim przedstawiono wybrane modele tarcia stosowane do- tychczas w klasycznym podziale na statyczne i dynamiczne. Przedstawiony przegląd zawiera najbardziej znaczące etapy rozwoju modelowania tarcia i choć nie obejmuje wszystkich znanych podejść, to odwołania literaturowe pozwalają Czytelnikowi na dalszą eksplorację tego tematu. Szczególny nacisk położono na nowe pomysły, jak modele szczotkowe, modele uwzględniające histerezę oraz nowe charakterystyki dynamiczne tarcia. W kolejnym rozdziale zaprezentowano wyniki badań eksperymentalnych wymuszanego wzbudnikiem drgań oscylatora ciernego, opisano stanowisko badawcze i metody pomiarowe. Przedstawiony zostal model matematyczny oscylatora oraz jego uproszczona wersja, która stanowiła podstawę dalszego modelowania numerycznego. Pokazane zostały wyniki badań eksperymentalnych odzwierciedlających różne zachowania badanego oscylatora. Zebrane wyniki posłużyly do zbudowania nowego matematycznego modelu zjawiska pokazanego w rozdziale 5. Rozdział ten rozpoczyna propozycja nowego podziału modeli tarcia -na układy wrażliwe i niewrażliwe na dynamikę układu. Pomysł pochodzi z zaprezentowanych wcześniej wyników eksperymentalnych i przeglądu z roz- dzialu 3. Zawiera także opis modelu tarcia uwzględniający takie elementy, jak sztywność kontaktową, pamięć tarcia, nieodwracalność, zmienną war- tość siły zrywającej oraz czynniki stochastyczne. Poprawność modelu zweryfikowano poprzez porównanie wyników eksperymentalnych z rezultatami symulacji numerycznych. Wnioskiem jest stwierdzenie, że model pozwala na precyzyjną symulację rzeczywistej dynamiki siły tarcia oraz odpowiedzi układu na wymuszenie. W rozdziale 6 zaprezentowane zostały wyniki kolejnych symulacji numerycznych typowych ukladów mechanicznych, wykorzystując między innymi proponowany model tarcia. Przedmiotem analizy byl klasyczny cierny oscylator samowzbudny z dodatkowym wymuszeniem zewnętrznym oraz nieliniowy oscylator typu Duffinga z zewnętrznym wymuszeniem harmonicznym i z tłumieniem tarciem suchym. Porównań dokonano, używając różnych charakterystyk tarcia od modelu klasycznego, przez Poppa-Steltera, niepowracającą wrażliwą charakterystyką opracowywaną wcześniej z udziałem autora oraz opisaną nowym proponowanym modelem histerezowym. Wyniki pokazano z wykorzystaniem nowoczesnych metod badawczych, z których najważniejsza -nowe podejście do estymacji maksymalnych wykładników Lapunowa poprzez synchronizację map, świetnie sprawdza się w układach z nieciągłością, jaką wprowadza do ruchu tarcie suche. Wnioski zawarte w końcu tego rozdziału są dość istotne z punktu widzenia zarówno inżynierów, jak i badaczy zjawiska. W części końcowej podsumowano rozważania proponowanego wrażliwe- go modelu statycznego tarcia. Istotność uogólnienia polega na możliwości zastosowania w nim dowolnej funkcji modelującej efekt Stribecka przy przejściu do tarcia kinetycznego oraz pokazano ważne zalety -prostotę zastosowania w symulacjach numerycznych, uniwersalność (można łatwo uzyskać inne charakterystyki tarcia), możliwość symulacji różnych zjawisk związanych z tarciem. Z praktycznego punktu widzenia wniosek, że największy wpływ na dynamikę układu z tarciem ma średni poziom siły tarcia kinetycznego, jest ważnym efektem rozważan. Pokazano też kierunki stanowiące drogę dalszego rozwijania modelowania zjawiska tarcia.
EN
In the book phenomena of hysteretic behaviour of a friction force observed during experiments are discussed. A review of friction models and friction phenomena is enclosed. On the basis of experimental and theoretical ana- lyses there is argued that such behaviour can be considered as a representation of the system dynamics. According to this approach, a new classification of friction models, with respect to their sensitivity on the system motion nature, is introduced. General friction modelling of the phenomena accompanying dry friction and a simple yet effective model capturing the hysteretic effects is proposed. Finally, the experimental results are compared with the numerical simulations for the proposed friction model. Also, for the verification purposes the model is applied in two examples of the typical nonlinear applications together with other, classical approaches. New method of calculating Lyapunov exponents for systems with discontinuity is applied. Importance of average level of friction force to the system dynamics is shown.
Słowa kluczowe
Rocznik
Tom
Strony
6--126
Opis fizyczny
Bibliogr. 140 poz., wykr.
Twórcy
autor
  • Politechnika Łódzka. Katedra Dynamiki Maszyn
Bibliografia
  • [1] Al-Bender F, Symens FW, Swevers J, Van Brussel H: Theoretical analysis of the dynamic behavior of hysteresis elements in mechanical systems, (2004), International Journal of Non-Linear Mechanics, 39, 1721-1735.
  • [2] Al-Bender F, Lampaert V and Swevers J: The Generalized Maxwell-Slip Model: A novel generic model at asperity level for dryfriction force dynamics, (2004), Tribology Letters, 16(1-2), 81-93.
  • [3] Al-Bender F, Lampaert V and Swevers J: The Generalized Maxwell-Slip Model: A Novel Model for Friction Simulation and Compensation, (2005), IEEE Transactions on Automatic Control, 50(11), 1883-1887.
  • [4] Altpeter F: Friction Modelling, Identification and Compensation, (1999), These No 1988, Ecole Polytechnique Federale de Lausanne, Lausanne.
  • [5] Antoniou S, Cameron A and Gentle C: The Friction-Speed Relation from Stick-Slip Data, (1976), Wear, 36, 235-254.
  • [6] Armstrong-Helouvry B: Control of Machines with Low- Velocity Nonlinear Friction: A Dimensional Analysis, Proceedings of the First International Symposium on Experimental Robotics, (1989), Montreal, Quebec, 180-195.
  • [7] Armstrong-Helouvry B: Control of Machines with Friction, (1991), Kluwer Academic Press, Massachussets.
  • [8] Armstrong-Helouvry B: Frictional Lag and Stick-Slip, (1992), Proc. of the 1992 IEEE International Conference on Robotics & Automation, Nice, France -May 1992, 1448-1453.
  • [9] Armstrong-Helouvry B: Stick slip and control in low speed motion, (1993), IEEE Transactions on Automatic Control, 38, 1483-1496.
  • [10] Armstrong-Helouvry B, Dupont P and Canudas de Wit C: A survey of models, analysis tools and compensation methods for the control of machines with friction, (1994), Automatica, 30(7), 1083-1138.
  • [11] Armstrong-Helouvry B and Canudas de Wit C: The Control Handbook, chapter; Friction Modeling & Compensation, (1996), CRC Press, 1369-1382.
  • [12] Aronov V, D'Souza AF, Kalpakjian S and Shareef I: Experimental investigation on the effect of system rigidity on wear and friction-induced vibrations, (1983), Journal of Lubrication Technology, 105, 206-211.
  • [13] Aronov V, D'Souza AF, Kalpakjian S and Shareef I: Interactions among friction, wear and system stiffness -Part 1: Effect of normal load and system stiffness; Part 2: Vibrations induced by dry friction; Part 3: Wear model, (1984), Journal of Lubrication Techology,106, 54-69.
  • [14] Awrejcewicz, J and Olejnik P: Friction pair modeling by a 2-DOF system: numerical and experimental investigations, (2005), International Journal of Bifurcation and Chaos, 15(6), 1931-1944.
  • [15] Awrejcewicz J, Dzyubak L and Grebogi C: Estimation of Chaotic and Regular (Stick-Slip and Slip-Slip) Oscillations Exhibited by Coupled Oscillators with Dry Friction, (2005), Nonlinear Dynamics, 42, 383-394.
  • [16] Awrejcewicz J, Sendkowski D: Stick-slip chaos detection in coupled oscillators with friction, (2005), International Journal of Solids and Structures, 42, 5669-5682.
  • [17] Babakov IM: Theory of vibrations, (1968), Moscow, Russia: Nauka. (po rosyjsku).
  • [18] Baumberger T: Dry friction dynamics at low velocities, (1996), w: Person, BMJ, Tosatti, E, eds; Physics of Sliding Friction, Ser. E, Applied Sciences - Vol. 311, Springer, 1-26.
  • [19] Bell Rand Burdekin M: A Study of the Stick-slip Motion of Machine Tool Feed Drives, (1969), Proceedings of the Institute of Mechanical Engineers, 184, Pt 1, 29, 543-560.
  • [20] Bell R, Burdekin M: An Investigation into the Mechanism of the Frictional Damping of Machine Tool Slideways, (1970), Proceedings of the Institution of Mechanical Engineers, 184, 1075-1096.
  • [21] Benabdallah HS: Reciprocating sliding friction and contact stress of some thermoplastics against steel, (1997), Journal of Materials Science, 32, 5069-5083.
  • [22] Benettin G, Galgani L, Giorgilli A, Strelcyn JM: Lyapunov exponents for smooth dynamical systems and Hamiltonian systems: a method for computing all of them, Part I: Theory, (1980), Meccanica, 15, 9-20.
  • [23] Benettin G, Galgani L, Giorgilli A, Strelcyn JM: Lyapunov exponents for smooth dynamical systems and Hamiltonian systems: a method for computing all of them, Part II: Numerical application, (1980), Meccanica, 15, 21-30.
  • [24] Bhushan B, Israelachvili IN and Landman U: Nanotribology: Friction, wear and lubrication at the atomic scale, (1995), Nature, 374, 607.
  • [25] Bliman P-A and Sorine M: Friction :modelling by hysteresis operators. Application to Dahl, sticktion and Stribeck effects, (1991), w: Proceedings of the Conference "Models of Hysteresis", Trento, Italy.
  • [26] Bliman P-A and Sorine M: Asystem-theoretic approach of systems with hysteresis. Application to friction modelling and compensation, (1993), w: Proceedings of the second European Control Conference, Groningen, The Netherlands, 1844-1849.
  • [27] Bliman P-A, Sorine M: Easy-to-use realistic dry friction models for automatic control, (1995), w: Proceedings of 3rd European Control Conference, Rome, Italy, September 1995, 3788-3794.
  • [28] Bo LC and Pavelescu D: The friction-speed relation and its influence on the critical velocity of stick-slip motion, (1982), Wear, 82, 277-289.
  • [29] Bogacz R, Ryczek B: Dry friction self-excited vibrations analysis and experiment, (1997), Engineering Transactions, (45)(3-4), 487-504.
  • [30] Bogacz R, Frismuth K and Langeman D: Numerical Analysis of a Mechanical Model Including Discontinuous Friction Force, (1998), w: Simulation in R&D, 19-31.
  • [31] Bogacz Rand Ryczek B: Almost periodic vibration excited by dry friction, (2000), Mechanics & Mechanical Engineering, 4(2), 197-212.
  • [32] Bogacz R, Ryczek B: Frictional Phenomena in Dynamical System with Two Frequency Excitation, (2003), Meccanica, 38, 711-717.
  • [33] Bowden FP and Tabor D: The area of contact between stationary and between moving surfaces, (1938), Proceedings of the Royal Society of London, A, 169, 391-413.
  • [34] Bowden FP and Leben L: The nature of sliding and the analysis of friction, (1939), Proceedings of the Royal Society of London, A, 169, 371-391.
  • [35] Burridge Rand Knopoff L: Model and theoretical seismicity, (1967), Bulletin of the Seismological Society of America, 57(3), 341-371.
  • [36] Canudas de Wit C, Olsson H, Astrom KJ and Lischinsky P: A new model for control of systems with friction, (1995), IEEE Transactions on Automatic Control, 40(3), 419-425.
  • [37] Canudas de Wit C and Lischinsky P: Adaptive friction compensation with partially known dynamic friction model, (1997), International Journal of Adaptive Control fj Signal Processing, 11, 65-80.
  • [38] Coulomb CA: Theorie des Machines Simples, (1785), w: Memoires de Mathematique et de Physique de Academie Royale, Paris, 161-342.
  • [39] Courtney-Pratt JS and Eisner E: The effect of a tangential force on the contact of metallic bodies, (1957), Proceedings of the Royal Society of London, A 238, 529-550.
  • [40] Dahl P: A solid friction model, (1968), Technical Report TOR-0158(3107-18)-1, The Aerospace Corporation, El Segundo, CA.
  • [41] Dahl P: Solid friction damping of spacecraft oscillations, (1975), AIAA Paper, No.75-1104 presented at the AIAA Guidance & Control Conference, Boston, MA.
  • [42] Dahl P: Solid friction damping of mechanical vibrations, (1976), AIAA Journal, 14(12), 1675-1682.
  • [43] Dankowicz H, Nordmark AB: On the origin and bifurcations of the stick-slip oscillations, (2000), Physica D, 136, 280-302.
  • [44] Den Hartog JP: Forced vibrations with combined Coulomb and viscous friction, (1931), Transactions of the ASME, 53, 107-115.
  • [45] Dupont PE: Avoiding Stick-Slip in Position and Force Control through Feedback, (1991), w: Proceedings of the 1991 International Conference on Robotics & Automatition, Sacramento: IEEE, 1470-1476.
  • [46] Dupont P, Armstrong B, Hayward, V: Elasto-Plastic Friction Model: Contact Compliance and Stiction, (2000), w: Proceedings of the 2000 American Control Conference, 2, Chicago, 1072-1077.
  • [47] Dupont P, Hayward V, Armstrong Band Altpeter F: Single state elastoplastic friction models, (2002), IEEE Transactions on Automatic Control, 47(5), 787-792.
  • [48] Ehirich LN and Krishnaprasad P: Adaptive friction compensation for bi-directionallow-velocity position tracking, (1992), w: Proceedings of the 31st Conference on Decision Control, 267-273.
  • [49] Fenny BF, Moon FC: Chaos in a forced dry friction oscillator: experiment and numerical modelling, (1994), Journal Sound & Vibration, 170(3), 303-323.
  • [50] Feeny BF and Liang JW: A Decrement method for the simultaneuous estimation of Coulomb and viscous friction, (1996), Journal Sound & Vibration, 195(1), 149-154.
  • [51] Feretti G, Magnani G and Rocco P: Single and Multistate Friction Models, (2004), IEEE Transactions on Automatic Control, 49(12), 2292-2297.
  • [52] Feretti G, Magnani G and Rocco P: An Integral Friction Model, (2004), w: Proceedings of the 2004 IEEE International Conference on Robotics & Automation, New Orleans, LA.
  • [53] Feretti G, Magnani G, Martucci G, Rocco P and Stampacchia V: Friction Model Validation in Sliding and Presliding Regimes with High Resolution Encoders, (2003), w: Siciliano B and Dario P: Experimental Robotics VIII, STAR 5, 328-337.
  • [54] Fujisaka H, Yamada T: Stability theory of synchronized motion in coupled-oscillator model, (1983), Progress of Theoretical Physics, 69(1), 32-47.
  • [55] Gu J-C, Rice JR, Ruina AL, Tse ST: Slip motion and stability of a single degree of freedom elastic system with rate and state dependent friction, (1984), Journal of the Mechanics & Physics of Solids, 32(3), 167-196.
  • [56] Haessig DA and Friedland B: On the modeling and simulation of friction, (1991), Journal of Dynamic Systems, Measurement & Control, 113(3), 354-362.
  • [57] Harnoy A and Friedland B: Modeling and simulation of elastic and friction forces in lubricated bearings for precise motion control, (1994), Wear, 172, 155-165.
  • [58] Hauschild J-P: Control of a Flexible Link Robotic Manipulator in Zero Gravity Conditions, (2003), A report presented to the University of Waterloo in fullfillment of the requirement for Gene 503.
  • [59] Hayward V and Armstrong B: A New Computational Model of Friction Applied to Haptic Rendering, (2000), w: Corke p and Trevelyan J, eds. : Experimental Robotics VI. Springer- Verlag, lecture notes in control and information sciences edition, 2000, 403-412.
  • [60] He, QC and Curnier A: Anisotropic dry friction between two orthotropic surfaces undergoing large displacements, (1993), European Journal of Mechanics, A/Solids, 12(5), 631-666.
  • [61] Hess DP and Soom A: Friction at a lubricated line contact operating at oscillating sliding velocities, (1990), Transactions of the ASME: Journal of Tribology, 112(1), 147-152.
  • [62] Hinrichs N, Oestreich M and Popp K: Dynamics of oscillators with impact and friction, (1997), Chaos, Solitons & Fractals, 4(8), 535-558.
  • [63] Hinrichs N, Oestreich M and Popp K: On the modelling of friction oscillators, (1998), Journal of Sound & Vibmtion, 216(3), 435-459.
  • [64] Nahvi A, Hollerbach JM, Freier R and Nelson DD: Display of friction in virtual environments based on human finger pad characteristics, (1998), w: Proceedings of the ASME, Dynamic System and Control Division (DSC), 64, 179-184.
  • [65] Hunt JB, Torbe I and Spencer GB: The phase-plane analysis of sliding motion, (1965), Wear, 8, 455-465.
  • [66] Johannes VI, Green MA and Brockley CA: The role of the rate of application of the tangential force in determining the static friction coefficient, (1973), Wear, 24, 381-385.
  • [67] Kappagantu RV and Feeny BF: Series Stability, (1998), Vibration Control Systems, Series B, 14, 167.
  • [68] Karnopp D: Computer simulation of stick-slip friction in mechanical dynamic systems, (1985), Journal of Dynamic Systems, Measurement & Control, 107(1), 100-103.
  • [69] Kato Sand Matsubayashi T: On the Dynamic Behavior of Machine-tool Slideway 1-st Report and 2-nd Report, (1970), Bulletin Japanese Society of Mechanical Engineers, 13(55), 170-188.
  • [70] Lampaert V, Swevers J and AI-Bender F: Modofication of the Leuven Integrated Friction Model Structure, (2002), IEEE Transactions on Automatic Control, 47(4), 683-687.
  • [71] Lampaert V, AI-Bender, F and Swevers, J: A novel generic model at asperity level for dry friction force dynamics, (2004), Tribology Letters, 16(1-2), 81-94.
  • [72] Lampaert V, AI-Bender, F and Swevers, J: Experimental characterization of dry friction at low velocities on a developed tribometer setup for macroscopic measurements, (2004), Tribology Letters, 16(1-2), 95-106.
  • [73] Laursen, TA: Computational Contact and Impact Mechanics: Fundamentals of Modelling Interfacial Phenomena, (2002), w: NonlinearFinite Element Analysis, Springer- Verlag, Berlin, Heidelberg.
  • [74] Liang J-W, Feeny BF: Dynamical friction behavior in a forced oscillator with a compliant contact, (1998), Journal of Applied Mechanics, 65,250-257.
  • [75] Makkar C, Dixon, WE, Sawyer WG and Hu G: Anew continously differentiable Friction Model for control systems design, (2005), w: Proceedings of the 2005 IEEE/ ASME International Conference on Advanced Intelligent Mechatronics, Monterey, California, USA,24-28 July 2005.
  • [76] Martins JAC, Oden JT and Simoes FMF: A study of static and kinetic friction, (1990), International Journal of Engineering Science, 28(1),29-92.
  • [77] Mayergoyz IG: Mathematical models of Hysteresis, (1991), Springer-Verlag.
  • [78] McMillan AJ: A Non-Linear Friction Model for Self-Excited Vibrations, (1997), Journal of Sound & Vibration, 205(3), 212-224.
  • [79] Mindlin RD: Compliance of elastic bodies in contact, (1949), Journal of Applied Mechanics, 16, 259-268.
  • [80] Motohisa Hand Kazumasa S: Atomistic locking and friction, (1990), Physical Review B, 41(17), 11837-11851.
  • [81] Mori T and Kawamura H: Simulation Study of Spatiotemporal Correlations of Earthquakes as a Stick-Slip Frictional Instability, (2005), Physical Review Letters, 94, 058501.
  • [82] Mroz, Z: Contact friction models and stability problems, (2002), w: Martins, JAG, Raous, M (eds), Friction and Instabilities, CISM Courses and Lectures, 457, Springer, Wien, New York, 315-340.
  • [83] MUller P: Calculation of Lyapunov exponents for dynamical system with discontinuities, (1995), Chaos, Solitons & F'ractals, 5(9), 1671-81.
  • [84] Oden JT and Martins JAC: Models and computational methods for dynamic friction phenomena, (1985), Computer Methods in Applied Mechanics and Engineering, 52, 527-634.
  • [85] Oestreich M: Untersuchung von Schwingern mit nichtglatten Kennlinien, (1998), Reiche 11, Schwingungstechnik 258.
  • [86] Olsson H, Astrom KJ, Canudas de Wit C, Giifvert M, Lischinsky P: Friction models and friction compensation, (1998), European Journal of Control, 4(3), 176-195.
  • [87] Oseledec VI: A multiplicative ergodic theorem:Lyapunov characteristic numbers for dynamical systems, (1968), Transactions of the Moscow Mathematical Society 19, 197-231.
  • [88] Pecora LM, Caroll TL: Synchronization of chaos, (1990), Physical Review Letters, 64, 221-224.
  • [89] Popp K and Stelter P: Non-linear oscillations of structures induced by dry friction, (1990), w: Schiehlen W, ed.: Non-linear Dynamics in Engineering Systems, Springer, New York.
  • [90] Popp K: Some model problems showing stick-slip motion and chaos, (1992), Friction Induced Vibration, Chatter, Squeal & Chaos, DE 49, ASME.
  • [91] Powell J and Wiercigroch M: Influence of non-reversible Coulomb characteristics on the response of a harmonically excited linear oscillator, (1992), Machine Vibration, 1(2), 94-104.
  • [92] Prajogo T: Experimental study of pre-rolling friction for motionreversal error compensation on machine tool drive systems, (1999), Dept. Werktuigkunde Katholieke Universiteit, Leuven.
  • [93] Rabinowicz E: The nature of the static and kinetic coefficients of friction, (1951), Journal of Applied Physics, 22(11), 1373-79.
  • [94] Rabinowicz E: A study of the stick-slip process, (1957), w: navies R, ed.: Symposium on Friction and Wear, Detroit, Elsevier, NY, 149-161.
  • [95] Rabinowicz E: The intrisinc variables affecting the stick-slip process, (1958), Proceedings of the Physical Society, 71, 668-375.
  • [96] Rabinowicz E: Friction and Wear of Materials, (1965), Wiley, New York.
  • [97] Ramberg Wand Osgood WR: Description of stress.,strain curves by three parameters, (1943), Tech. Note 902, National Advisory Committee for Aeronautics, Washington.
  • [98] Rice JR and Ruina AL: Stability of steady frictional slipping, (1983), Paper No. 83-APM-16, ASME Applied Mechanics, Bioengineering and Fluids Engineering Conference, Houston, TX.
  • [99] Richardson RSH and Nolle H: Surface friction under time dependent loads, (1976), Wear, 37,87-101.
  • [100] Ruina AL: Slip instability and state variable friction laws, (1983), Journal of Geophysical Research, 88(B13), 10359-10370.
  • [101] Ryczek B: Drgania samowzbudne uklad6w dyskretnych wzbudzane tarciem suchym; teoria i weryfikacja doswiadczalna, (2001), Praca doktorska, Polska Akademia Nauk, Instytut Podstawowych Problemów Techniki, Warszawa.
  • [102] Sakamoto T: Normal displacement and dynamic friction characteristics in a stick-slip process, (1987), Tribology International, 20, 25-31.
  • [103] Sampson, JB, Morgan B, Reed DW and Muskat M: Studies in lubrication: Friction behaviour during the slip portion of the stick-slip process, (1943), Journal of Applied Physics, 14, 689-700.
  • [104] Sargin ,M: Stress-strain relationship for concrete and the analysis of structural concrete sections, (1971), SM Study 4, Solid Mechanics Division, University of Waterloo, Canada.
  • [105] Serafin S, A vanzini F, Rochesso D: Bowed String Simulation using an Elasto-Plastic Friction Model, (2003), w: Proceedings of the Stockholm Music Acoustics Conference, August 6-9, 2003, (SMAC03).
  • [106] Shaw SW: On the dynamic response of a system with dry friction, (1986), Journal Sound fj Vibration, 108, 305-325.
  • [107] Shimada I, N agashima T: A numerical approach to ergodic problem of dissipative dynamical systems, (1979), Progress of Theoretical Physics, 61(6), 1605-1616.
  • [108] Shinozuka M, Jan C-M: Digital simulation of random processes and its applications, (1972), Journal of Sound & Vibration, 251, 111-128.
  • [109] Shinozuka M and Deodatis G: Simulation of stochastic processes by spectral representation, (1992), Applied Mechanics Review, 44, 191-203.
  • [110] Soom A and Kim C: Interactions between dynamic normal and friction forces during unlubricated sliding, (1983) , Journal of Lubrication Technology, 105, 221-229.
  • [111] Soom A and Kim C: Roughness induced dynamic loading at dry and boundary-lubricated sliding contacts, (1983), Journal of Lubrication Technology, 105, 514-517.
  • [112] Stefański A, Wojewoda J, Wiercigroch M: Numerical Analysis of Duffing Oscillator with Dry Friction, (2000), Mechanics & Mechanical Engineering, 4(2), 127-137.
  • [113] Stefański A: Estimation of the largest Lyapunov exponent in systems with impacts, (2000), Chaos, Solitons & Fractals, 11, 2443-2451.
  • [114] Stefański A, Wojewoda J, Furmanik K: Experimental and numerical analysis of self-excited friction oscillator, (2001) , Chaos, Solitons & Fractals, 12, 1691-1704.
  • [115] Stefański A, Wojewoda J, Wiercigroch M and Kapitaniak T: Chaos Caused by Non-Reversible Dry Friction, (2003), Chaos, Solitons & Fractals, 16, 661-664.
  • [116] Stefański A, Kapitaniak T: Estimation of the dominant Lyapunov exponent of non-smooth systems on the basis of maps synchronization, (2003), Chaos, Solitons & Fractals, 15, 233-244.
  • [117] Stefański A, Dąbrowski A, Kapitaniak T: Evaluation of the largest Lyapunov exponent in dynamical systems with time delay, (2005), Chaos, Solitons & Fractals, 23, 1651-1659.
  • [118] Stefański A, Wojewoda J, Wiercigroch M and Kapitaniak T: Regular and chaotic oscillations of friction force, (2006), Proceedings of the Institution of Mechanical Engineers -Part C: Journal of Mechanical Engineering Science, 220(1).
  • [119] Stribeck R: Die wesentlichen Eigenschaften der Gleit- und Rollenlager (The key qualities of sliding and roller bearings), (1902), Zeitschrift des Vereines Deutscher Ingenieure, 46(38,39), 1342-48, 1432-37.
  • [120] Suh NP and Sin H-C: The genesis of friction, (1981), Wear, 69, 91-114.
  • [121] Swevers J, Lampaert V, Al-Bender F and Prajogo T: An integrated friction model structure with improved presliding behaviour for accurate friction compenstaion, (2000), IEEE Transactions on Automatic Control, 45, 675-686.
  • [122] Tan KK, Huang SN, Lee TH: Adpative Friction Compensation with Time-Delay Friction Model, (2002), w: Proceedings of the 4th World Congress on Intelligent Control and Automatition, June 10-14, 2002, Shanghai, PR China.
  • [123] Tomlinson GA: A molecular theory of friction, (1929), Philosophical Magazine & J. of Science, 7(46), 905-939.
  • [124] Tolstoi, DM, Borisova, GA and Grigorova SR: Role of intrisinc contact oscillations in normal direction during friction, (1971), Nature of the Friction of Solids, 116, Nauka i Tekchnika, Minsk.
  • [125] Tolstoi DM: Significance of the normal degree of freedom and natural normal vibrations in contact friction, (1967), Wear, 10, 199-213.
  • [126] Tustin A: The effects of backlash and of speed-dependent friction on the stability of closed-cycle control systems, (1947), Journal of the Institution of Electrical Engineers, 94(2A), 143-151.
  • [127] Walrath C: Adaptive bearing friction compensation based on recent knowledge of dynamic friction, (1984), Automatica, 20(6),717-727.
  • [128] Wiercigroch M: Comments on the study of a harmonically excited , linear oscillator with a Coulomb damper, (1993), Journal of Sound & Vibration, 167(3), 560-563.
  • [129] Wiercigroch M: A Note on the switch function for the stick-slip phenomenon, (1994), Journal of Sound & Vibration, 175, 700-705.
  • [130] Wiercigroch M and Cheng AD-H: Chaotic and stochastic dynamics of metal cutting process, (1997), w: Rahnejat H and Whalley R, eds. Multi-Body Dynamics: Monitoring and Simulation Techniques, MEP, London, 351-366.
  • [131] Wiercigroch M, Sin VWT, Liew ZFK: Non-reversible dry friction oscillator: design and measurements, (1999), Proceedings of the Institution of Mechanical Engineers -Part C: Journal of Mechanical Engineering Science, 213, 527-534.
  • [132] Wojewoda J: Experimental Study and Analysis of Quasiperiodically Forced System with Dry Friction, (1992), Ph. D. Thesis, Univeristy of Strathclyde.
  • [133] Wojewoda J: Chaotic behavior of friction force, (1992), International Journal of Bifurcation & Chaos, 2(1), 205-209.
  • [134] Wojewoda J, Kapitaniak T: Oscillations of a quasiperiodically forced system with dry friction, (1993), Journal of Sound & Vibration, 163(2), 379-384.
  • [135] Wojewoda J, Kapitaniak T, Barron Rand Brindley J: Complex Behavior of a Quasiperiodically Forced Experimental System with Dry Friction, (1993), Chaos, Solitons & Fractals, 3(1), 35-46.
  • [136] Wojewoda J, Stefański A, Wiercigroch M and Kapitaniak T: Hysteretic effects of dry friction: modelling and experimental studies, (2008), Philosophical Transactions of the Royal Society A, 366(1866), 747-765, doi:10.1098/rsta.2007.2125.
  • [137] Wolf A, Swift JB, Swinney HL, Vastano JA: Determining Lyapunov exponents from a time series, (1985), Physica D, 16, 285-317.
  • [138] Wolf A: Quantifying chaos with Lyapunov exponents, (1986), w:Holden V, ed.: Chaos, Manchester, Manchester University Press, 273-290.
  • [139] Zmitrowicz, A: Glaciers and laws of friction in sliding, (2003), Acta Mechanica, 166(1-4), 185-206.
  • [140] Zmitrowicz, A: Models of kinematics dependent anisotropic and heterogeneous friction, (2006), International Journal of Solids and Structures, 43, 4407-4451.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0004-0013
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.