PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synteza, budowa i właściwości β-galaktozylopolihydroksyalkoholi otrzymanych w reakcji transglikozylacji z udziałem β-galaktozydazy

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
PL
Przedmiotem badań była synteza, struktura, właściwości biologiczne oraz stabilność podczas pasteryzacji i składowania galaktozylowych pochodnych polihydroksyalkoholi: sorbitolu, ksylitolu, erytritolu i laktitolu. Syntezę gal-polioli prowadzono na drodze transglikozylacji towarzyszącej hydrolizie laktozy z użyciem β-galaktozydazy. Stosowano 65% (w/v) roztwory laktozy i poliolu. Najwyższe zawartości gal-sorbitolu, gal-ksylitolu i gal-erytritolu uzyskiwano, stosując roztwory o stosunku molowym laktozy do poliolu wynoszącym 1:1.9. Enzymy z drożdży (K. lactis i K. fragilis) wytwarzały większe ilości pochodnych polioli-monomer6w, natomiast β-galaktozydaza z Aspergillus oryzae szybciej syntetyzowała trimery (pochodną laktitolu). Wyznaczono optymalne dawki enzymu: 2500 AUL/100 ml do syntezy β-erytritolu, 1300 AUL/lOO ml do syntezy gal-ksylitolu, 4000 AUL/lOO ml do syntezy gal-sorbitolu (w przypadku enzymu z K. lactis może być wyższa -5500 AUL/100 ml) i 2600 AUL/lOO ml do syntezy gal-laktitolu. Stosowanie nadmiemych ilości β-galaktozydazy przyczyniało się do intensyfikacji hydrolizy produktów transglikozylacji, co skutkowalo obniżeniem zawartości gal-polioli w hydrolizacie. Najwyższe zawartości gal-sorbitolu, gal-ksylitolu, gal-erytritolu i gal- laktitolu w suchej substancji hydrolizatu po syntezie w optymalnych warunkach pH (6.5) wynosiły odpowiednio: 16.4, 15.2, 18.8 i 16.9% (w/w). Zastosowano modyfikację warunków reakcji (temperatura, pH, zawartość suchej substancji i obecność soli NaCl) podczas syntezy gal-sorbitolu (sorbitol jest najtańszym z testowanych polioli, a jednocześnie powstająca pochodna jest strukturalnie najbardziej podobna do stosowanego już w żywności laktitolu). Wykazano, że wyższe pH oraz obecność chlorku sodu w roztworze laktozy i sorbitolu sprzyja syntezie gal-poliolu. Stosując enzym z K. lactis, uzyskano ponad 10% przyrost zawartości prod.pktu po reakcji w pH = 91ub w 0.25-0.75M roztworze NaCl. Zastosowano metodę enzymatycznej (oksydaza glukozowa) biokonwersji glukozy do kwasu glukonowego i dalej do glukonianu wapnia (z użyciem węglanu wapnia) jako techniki podwyższania zawartości gal-polioli w hydrolizatach poprzez usunięcie glukozy (pod postacią glukonianu wapnia na drodze krystalizacji lub z wykorzystaniem wymieniaczy jonowych). W suchej substancji hydrolizatów pozbawionych glukozy zawartość gal-sorbitolu, gal-ksylitolu, gal-erytritolu i gal-laktitolu wynosiła odpowiednio: 19.8, 17.8, 24.2 i 20.1% (w/w). Dodatkową korzyścią stosowania tej techniki wzbogacania hydrolizatów jest otrzymywanie stosowanej w produkcji żywności soli wapniowej kwasu glukonowego. Z wykorzystaniem technik MS i NMR potwierdzono strukturę galaktozylowych pochodnych polioli-monomerów. Wykazano, iż w uzyski- wanych pochodnych wystąpują przede wszystkim wilązania z pierwszo- rzędowymi węglami polioli β,1 w pochodnych erytritolu, ksylitolu i sorbitolu oraz β-1,6 w pochodnej sorbitolu). W pochodnych erytritolu i ksylitolu występowały ponadto wiązania β-1,2, a w gal-ksylitolu i ga1-sorbitolu β-1,3. Doświadczenia z wykorzystaniem wybranych szczepów z rodzaju Lactobacillus wykazały , iż galaktozylowe pochodne polioli są metabolizowane przez te drobnoustroje, indukując przy tym aktywność antagonistyczną bakterii mlekowych przeciwko wybranym patogenom (Eschericha coli ATCC 23922, Salmonella enterica subsp. enterica serovar Typhimurium, Shigella sonnei S, Enterobacter cloacae LOCK 0835, Citrobacter ferundi). Aktywność ta byla wyższa niż rejestrowana w obecności polioli. Gal-sorbitol wykazywał podobne zdolności indukowania aktywności antagonistycznej co laktitol. W doświadczeniach na szczurach wykazano, iż gal-poliole posiadają zdolność modyfikowania parametrów krwi i treści jelita. Wszystkie badane pochodne podnosiły masę tkanki i treści jelita, obniżały pH oraz intensyfikowały produkcję krótkołańcuchowych kwasów tłuszczowych. Gal-poliole obniżały jednocześnie stężenie amoniaku w treści jelita oraz aktywność szkodliwej β-glukoronidazy. W różnym stopniu wybrane pochodne obniżały stężenie glukozy, cholesterolu i TAG we krwi.
EN
Synthesis, structure and biological properties of galactosyl derivatives of polyhydroxyalcohols, as well as their stability during pasteurization and storage, have been studied. The highest contents of gal-sorbitol, gal-xylitol and gal-erythritol, formed , during lactose hydrolysis with 13-galactosidase were obtained using initial solution of the molar ratio of lactose to polyol equal to 1:1.9. In the case of lactitol that proportion amounted to 1:2.9. Enzymes from yeast (K. lactis and K. fragilis) presented larger inclination towards the synthesis of derivatives of polyols-monomers, whereas the enzyme from Aspergillus oryzae synthesised trimmers (derivative of lactitol) faster. Excessive dosing of the enzymes brought about the intensification of gal-polyol hydrolysis and decrease of their content in the hydrolysates. Thus, the dose of 13-galactosidase should not exceed 2500 AUL/lOO mi in gal-erythritol synthesis, 1300 AUL/100 mi in gal-xylitol synthesis, 4000 AUL/l00 mi in gal-sorbitol synthesis and 2600 AUL/l00 mi in gal-lactitol synthesis. The highest contents of gal-sorbitol, gal-xylitol, gal-erythritol and gal- lactitol in dry matter of hydrolysate after synthesis at optimal pH (6.5) were: 16.4, 15.2, 18.8 and 16.9%(w/w). As sorbitol is the most promising polyol for gal-polyol production because of it's low cost and similarity of gal-sorbitol to lactitol (used in food production), sorbitol was used for synthesis of galactosyl derivative under modified conditions (temperature, pH, concentration of lactose-sorbitol solution, presence of NaCl). It was proved that higher pH and presence of salt in lactose solution promoted the synthesis of gal-polyol using enzyme from K. lactis (over 10% increase of gal-sorbitol content of hydrolysate after processing at pH = 9 or in 0.25-0.75M NaCl solution). It was shown that enzymatic oxidation of glucose to gluconic acid and transformation of the acid into calcium salt (removed by crystallisation or with ion-exchangers) may be a useful technique for increasing the gal-polyol content of lactose hydrolysate. In dry matter of glucose-free hydrolysates the contents of gal-sorbitol, gal-ksylitol, gal-erytritol and gal-laktitol were: 19.8, 17.8, 24.2 and 20.1 %(w/w). In addition, calcium gluconate (used in food production) is obtained. The structure of galactosyl derivatives of polyol-monomers was determined with mass spectroscopy and NMR. In obtained products monosacharide and polyol were mainly interlinked by 13-1,1 bonds (gal-erythritol, gal-xylitol, gal-sorbitol). In gal-sorbitol there were also 13-1,6 bonds. In gal-erythritol and gal-xylitol 13-1,2 bonds were present, while in gal-xylitol and gal-sorbitol molecules 13-1,3 bonds occured. Galactosyl derivatives of erythritol, xylitol and sorbitol were metabolised by Lactobacillus spp. This resulted in their antagonistic activity against the test pathogens (Eschericha coli A TCC 23922, Salmonella enterica subsp. enterica serovar Typhimurium, Shigella sonnei S, Enterobacter cloacae LOCK 0835, Citrobacter ferundi). This activity was higher than that of polyols. Gal-sorbitol obtained by enzymatic transglycosylation from lactose had the same abilities of inducing the antagonistic activity of lactic acid bacteria that lactito1 had. Gal-polyols influenced the caecal and blood parameters in rats. They all increased the caecal (tissue and digesta) weight, lowered the pH, and enhanced production of SCFAs. Gal-polyols decreased ammonia concentration in the caecum and lowered the activity of harmful 13-glucuronidase. Some gal-polyols had the ability of lowering glucose, cholesterol and TAG concentration in serum.
Rocznik
Tom
Strony
5--139
Opis fizyczny
Bibliogr. 230 poz., wykr.
Twórcy
autor
Bibliografia
  • [1] Albayrak N., Yang S.-T. (2002) Immobilization of Aspergillus oryzae β-galactosidase on tosylated cotton cloth. Enz. MicroD. Technol. 31: 371-383.
  • [2] Albayrak N., Yang S.-T. (2002) Production of galacto-oligosaccharides from lactose by Aspergillus oryzae β-galactosidase immobilized on cotton cloth. Biotechnol. Bioeng. 77: 8-19.
  • [3] American Chemical Society (2006) Guidelines for Authors. J. Org. Chem. 71: lA-11A.
  • [4] Anonim (1998) Maxilact -β-D-galaktozydaza, laktaza. Przemysł Spożywczy 3:16-18.
  • [5] Ariga 0., Suzuki T., Sano Y., Murakami Y. (1996) Immobilization of a thermostable enzyme using a sol-gel preparation method. J. Ferment. Bioeng. 82:341-345.
  • [6] Arndt E.A., Wehling R.L. (1989) Development of Hydrolyzed and Hydrolyzed-Isomerized Syrups from Cheese Whey Ultrafiltration Permeate and Their Utilization in Ice Cream. J. Food Sci. 54: 880-884.
  • [7] Asian Y ., Tanriseven A. (2007) Immobilization of Pectinex Ultra SP-L to produce galactooligosaccharides. J. Mol. Catal. B: Enzymatic 45: 73-77.
  • [8] Asvarujanon P ., Ishizuka S., Hara H. (2005) Promotive effects of non-digestible disaccharides on rat mineral absorption depended on the type of saccharide. Nutr. 21: 1025-1035.
  • [9] Badet C., Richard R. Castaing-Debat M., de Flaujac P.M., Dorignac G. (2004) Adaptation of salivary Lactobacillus strains to xylitol. Arch. Oral Biol. 49:161-164.
  • [10] Bae S.-M., Park Y.-C., Lee T.-H., Kweon D.-H., Choi J.-H., Kim S.-K., Ryu Y.-W., Seo J.-H. (2004) Production of xylitol by recombinant Saccharomyces cerevisiae containing xylose reductase gene in repeated fed-batch and cell-recycle fermentations. Enz. Microb. Technol. 35: 545-549.
  • [11] Ballongue J., Schumann C., Quignon P. (1997) Effects of lactulose and lactitolon colonic and enzymatic activity. Scand. I. Gastroenterol. Suppl. 222: 41-44.
  • [12] Bao J., Furumoto K., Yoshimoto M., Fukunaga K., Nakao K. (2003) Competitive. inhibition by hydrogen peroxide produced in glucose oxidation catalyzed by glucose oxidase. Biochem. Eng. J. 13: 69-72.
  • [13] Bao J., Koumatsu K., Furumoto K., Yoshimoto M., Fukunaga K., Nakao K. (2001) Optimal operation of an integrated bioreaction-crystallization process for continuous production of calcium gluconate using external loop airlift columns. Chem. Eng. Sci. 56: 6165-6170.
  • [14] Beecher J.E., Andrews A.T., Vulfson E.N. (1990) Glycosidases in organic solvents: II. Transgalactosylation catalysed by polyethylene glycol-modified β-galactosidase. Enz. Microb. Technol. 12: 955-959.
  • [15] Berger J.L., Lee B.H., Lacroix C. (1995) Oligosaccharides synthesis by free andimmobilized β-galactosidases from Thennus aquaticus Yt-l. Biotechnol. Lett. 17:1077-1080.
  • [16] Bielecki S., Buchowiecka A., Gajewska M. (1999) Enzymatyczna synteza oligosacharyd6w. Biotechnologia 44: 67-83.
  • [17] Blei A.T., Cordoba J. (2001) Hepatic Encephalopathy. Am. J. Gastroenterol. 96:1968-1976.
  • [18] Bongaerts G., Severijnen R., Timmerman H. (2005) Effect of antibiotics, prebiotics and probiotics in treatment for hepatic encephalopathy. Med. Hypotheses 64: 64-68.
  • [19] Bonnin E., Thibault J.-F. (1996) Galactooligosaccharide production by transfer reaction of an exogalactanase. Enz. Microb. Technol. 19: 99-106.
  • [20] Boon M.A., Janssen A.E.M., van 't Riet (2000) Effect of temperature and enzyme origin on the enzymatic synthesis of oligosaccharides. Enz. Microb. Technol. 26: 271-281.
  • [21] Borculo Domo Ingredients, Holandia (2007) Vivinal GOS –informacja o produkcie.
  • [22] Bouhnik Y ., Flourie B., D' Agay-Abensour L., Pochart P ., Gramet G., Durand M., Rambaud J .-C. (1997) Administration of Transgalacto-Oligosaccharides Increases Fecal Bifidobacteria and Modifies Colonic Fermentation Metabolism in Healthy Humans. J. Nutr. 127: 444-448
  • [23] Bourdillon C., Hervagault C., Thomas D. (1985) Increase in operational stability of immobilized glucose oxidase by the use of an artificial cosubstrate" Biotechnol. Bioeng. 28: 1619-1622.
  • [24] Brashears M.M., Reilly S.S., Gilliland S.E. (1998) Antagonistic action of cells of Lactobacillus lactis toward Escherichia coli O157:H7 on refrigerated raw chicken meat. J. Food Prot. 61: 166-170.
  • [25] Brouns F., Vermeer C. (2000) Functional food ingredients for reducing the risk of osteoporosis. Food Sci. Technol. 11: 22-33.
  • [26] Buchholtz K., Godelmann B. (1978) Macrokinetics and operational stability of immobilized glucose oxidase and catalase. Biotechnol. Bioeng. 20: 1201-1220.
  • [27] Burin L., del Pilar Buera M. (2002) β-galactosidase activity as affected by apparent pH and physical properties of reduced moisture systems. Enz. Microb. Technol. 30: 367-373.
  • [28] Burschapers J., Schustolla D., Schiigerl K., Roper H., de Troostembergh J.C. (2002) Engineering aspects of the production of sugar alcohols with the osmophilic yeast Moniliella tomentosa var pollinis. Part 2. Batch and fed-batch operation in bubble column and airlift tower loop if reactors. Process Biochem. 38: 559-570.
  • [29] Bury D., Jelen P. (2000) Lactose hydrolysis using a disrupted dairy culture: Evaluation of technical and economical feasibility. Can. Agric. Engineering 42:75-80.
  • [30] Cazetta M.L., Celligoi M.A.P.C., Buzato JoB., Scarmino I.S., da Silva R.S.F. (2005) Optimization study for sorbitol production by Zymomonas mobilis in sugar cane molasses. Process BioChem. 40: 747-751.
  • [31] Cerestar: Francja (2001) Polyols in food -informacja o produkcie.
  • [32] Cesca B., Manca de Nadra M.C., Strasser de Sa ad A.M., Pesce de Ruiz Holgado A., Oliver G. (1984) β-D-Galactosidase of Lactobacillus species. Folia Microbiol. (Praha) 29: 288-.294.
  • [33] Chen C., Li L., Wu Z., Chen H., Fu S. (2007) Effects of lactitol on intestinal microflora and plasma endotoxin in patients with chronic viral hepatitis.J. Infection 54: 98-102.
  • [34] Chen C.W., Ou-Yang C.-C., Yeh C.-W. (2003) Synthesis of galactooligosaccharides and transgalactosylation modeling in reverse micelles. Enz. Microb. Technol. 33: 497-507.
  • [35] Cheng C.-C., Yu M.-C., Cheng T.-C., Sheu D.-C., Duan K.-J., Tai W.-L.(2006) Production of high-content galactooligosaccharides by enzyme catalysis and fermentation with Kluyveromyces marxiannus. Biotehnol. Lett. 28: 793- 797.
  • [36] Chirife J., Gonzalez H.H.L., Resnik S.L. (1996) On water dynamics and germination time of mold spores in concentrated sugar and polyol solutions. Food Res. Int. 28: 531-535.
  • [37] Chirlfe J., Resnik S.L. (1984) Unsaturated solutions of sodium chloride as reference sources of water activity at various temperatures. J. Food Sci. 49: 1486.
  • [38] Chockchaisawasdee S., Athanasopoulos V .1., Niranjan K., Rastall R.A. (2005) Synthesis of galacto-oligosaccharide from Kluyveromyces lactis: Studies on batch and continuous UF membrane-fitted bioreactors. Biotechnol. Bioeng. 89: 434-443.
  • [39] Coconnier M.-H., Lievin V., Hemery E., Servin A.L. (1998) Antagonistic activity against Helicobacter infection in vitro and in vivo by the human Lactobacillus acidophilus starin LB. Appl. Environ. Microbiol. 64: 4573-4580.
  • [40] Con A.H., Gokalp H. Y ., Kaya M. (2001) Antagonistic effect on Listeria monocytogenes and L. innocua of a bacteriocin-like metabolite produced by lactic acid bacteria isolated from sucuk. Meat Sci. 59: 437-441.
  • [41] Coton S.G. (1980) Subject: whey technology. The utilization of permeates from the ultrafiltration of whey and skim milk. J. Soc. Dairy Technol. 33: 89.
  • [42] Crlttenden R.G. (1999) Prebiotics. W Probiotics. A critical reviev. (ed. Tannock G.W.) Horizon Scientific Press. Wymondham, U.K.. 141-156.
  • [43] Crlttenden R.G., Playne M.J. (1996) Commercially available oligosaccharides. Bull. IDF 313: 10-22.
  • [44] Crlttenden R.G., Playne M.J. (1996) Production. properties and application of food-grade oligosaccharides. Trends Food Sci. Technol. 7: 353-361.
  • [45] Cruz R., Cruz V .D' A., Belote J.G., de Oliveira Khenayfes M., Dorta C., dos Santos Oliveira L.H. (1999) Properties of a new fungal β-galactosidase with potential application in the dairy industry. Rev. Microbiol. 30: 265-271.
  • [46] Cruz-Guerrero A.E., Gomez-Ruiz L., Viniegra-Gonzalez G., Barzana E., Garcia-Garlbay M. (2006) Influence of water activity in the synthesis of galactooligosaccharides produced by a hyperthermophilic β-glycosidase in an organic medium. Biotechnol. Bioeng. 93: 1123-1129.
  • [47] De Schrijver K., Vanboff K., Van de Guinste J. (1999) Nutrient utilization in rats and pigs fed enzyme resistant starch. Nutr. Res. 19: 1349-1361.
  • [48] de Vrese M., Schrezenmeir (1999) Nutritional aspects of lactose. Carbohydr. Europe 25: 18-23.
  • [49] De Vuyst L., Makras L., Avonts L., Holo H., Yi Q., Servin A., Fayol-Messaoudi D., Berger C., Zoumpopoulou G., Tsakalidou E., Sgouras D., Martinez-Gonzales B., Panayotopoulou E., Mentis A., Smarandache D., Savu L., Thonart P ., Nes I. (2004) Antimicrobial potential of probiotic or potentially probiotic lactic acid bacteria. the first results of the international european research project PROPATH of the PROEUHEALTH cluster. Microb. Ecol. Health Dis. 16:125-130.
  • [50] De Vuyst L., van der Meulen R., Markas L. (2005) Antimicrobial potential of probiotic bifidobacteria and lactobacilli. International Yakult Symposium, Ghent, Belgium -materiały konferencyjne.
  • [51] del-Val M.I., Hill jr. C.G., Jimenez-Barbero J., Otero C. (2001) Selective enzymatic synthesis of 6'-galactosyl lactose by Pectinex Ultra SP in water. Biotechnol. Lett. 23: 1921-1924.
  • [52] del-Val M.I., Otero C. (2003) Biphasic aqueous media containing polyethylene glycol for the enzymatic synthesis of oligosaccharides from lactose. Enz. Microb. Technol. 33: 118-126.
  • [53] Djouzi Z., Andrieux C. (1997) Compared effect of the three oligosaccharides on metabolism of intestinal microflora on rats inoculated with a human faecal flora. Br. I. Nutr. 78: 313-324.
  • [54] Fabre L., Gallezot P., Perrard A. (2001) Catalytic hydrogenation of arabinonic acid and arabinonolactones. Catal. Comm. 2: 249-253.
  • [55] FAO/WHO Working Group (2002) Guidelines for the evaluation of probiotics in food -raport, Ontario, Canada.
  • [56] Faria L.F.F., Pereira N. Jr., Nobrega R. (2002) Xylitol production from D-xylose in a membrane bioreactor. Desalination 149: 231-236.
  • [57] Fooks L.J., Gibson G.R. (2002) In vitro investigation of the effect of probiotics and prebiotics on selected human intestinal pathogens. FEMS Microbiol. Ecology 39: 67-75.
  • [58] Fortun Y ., Colas B. (1991) Lithium chloride effect on phenylethyl-13-D-galactosidase synthesis by Aspergillus oryzae 13-D-galactosidase in the presence of high lactose concentration. Biotechnol. Lett. 13: 863-866.
  • [59] Gałązka I., Klewicki R., Grzelak K. (2004) Hydroliza fruktanów w warunkach symulujących działanie soku żołądkowego. Żywność. Nauka. Technologia. Jakość.3(40) suplement: 68-76.
  • [60] Garman J., Coolbear T., Smart J. (1996) The effect of cations on the hydrolysis of lactose and the transferase reactions catalysed by 13-galactosidase from six trains of lactic acid bacteria. Appl. Microbiol. Biotechnol. 46: 22-27.
  • [61] Gaur R., Pant H., Jain R., Khare S.K. (2006) Galacto-oligosaccharide synthesis by immobilized Aspergillus oryzae 13-galactosidase. Food Chem. 97: 426-430.
  • [62] Gekas V., Lopez-Leiva M. (1985) Hydrolysis of lactose: A literature reviev. Process Biochem. 20: 2-12.
  • [63] Giacomini C., Irazoqui G., Gonzalez P ., Batista- Viera F ., Brena B.M. (2002) Enzymatic synthesis of galactosyl-xylose by Aspergillus oryzae β-galactosidase.J. Mol. Catal. B: Enzym. 19-20: 159-165.
  • [64] Giacomini C., Villarino A., Franco-Fraguas L., Batista-Viera F. (1998) Immobilization of β-galactosidase from Kluyveromyces lactis on silica and agarose: comparison of different methods. J. Mol. Catal. B: Enzym. 4: 313-327.
  • [65] Gibson G.R., Beatty E.R., Wang X., Cummings J.H. (1995) Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin.Gastroenterol. 108: 975-982.
  • [66] Giec A., Gmchala L., Wasowicz E. (1981) Formation of oligosaccharides during lactose hydrolysis with β-galactosidase in cheese-whey permeates. Acta Alim. Polonica 7: 199-208.
  • [67] Gopal P.K., Sullivan P.A., Smart J.B. (2001) Utilisation of galactooligosaccharides as selective substrates for growth by lactic acid bacteria including Bifidobacterium lactis DR10 and Lactobacillus rhamnosus DR20. Int. Dairy J. 11:19-25.
  • [68] Goulas A., Tzortzis G., Gibson G.R. (2007) Development of a process for the production and purification of (X- and β-galactooligosaccharides from Bifidobacterium bifidum NCIMB 41171.lnt. Dairy J. 17: 648-656.
  • [69] Granstrom T.B., Izumori K., Leisola M. (2007) A rare sugar xylitol. Part II: biotechnological production and future applications of xylitol. Appl. Microbiol. Biotechnol. 74: 273-276.
  • [70] Gregory K. (1980) New dairy processes using lactase. Food Process.Ind. 49: 44.
  • [71] Guarner F., Malagelada J.-R. (2003) Gut flora in health disease. Lancet 360:512-519.
  • [72] Hansson T., Andersson M., Wehtje E., Adlercreutz P. (2001) Influence of water activity on the competition between β- glycosidase-catalysed transglycosylation and hydrolysis in aqueous hexanol. Enz. Microb. Technol. 29: 527-534.
  • [73] Herrera J.R., Mackie I.M. (2004) Cryoprotection of frozen-stored actomyosin of farmed rainbow trout (Oncorhynchus mykiss) by some sugars and polyols. Food Chem. 84: 91-97.
  • [74] Hiele M., Ghoos Y., Rutgeerts P., Vantrappen G. (1993) Metabolism of erythritol in humans: comparison with glucose and lactitol. Br. J. Nutr. 69: 169-176.
  • [75] Hsu C.A., Lee S.L., Chou C.C. (2007) Enzymatic production of galactooligosaccharides by β-galactosidase from Bifidobacterium longum BCRC 15708. J. Agricultural Food Chem. 55: 2225-2230.
  • [76] Huber R.E., Gaunt M.T., Hurlburt K.L. (1984) Binding and reactivity at the "glucose" site of galactosyl β-galactosidase (Escherichia coli). Arch. Biochem. Biophys.234: 151-160.
  • [77] Ishikawa F ., Takayama H., Suguri T ., Matsumoto K., Ito M., Chonana 0., Deguchi Y ., Kikuci H., Watanuki M. ( 1995) Effects of β-1-4 linked galactooligosaccharides on human fecal microflora. Bifidus 9: 5-18.
  • [78] Islam M.S., Nishiyama A., Sakaguchi E. (2007) Sorbitol and lactitol reduce body fat and toxic ammonia levels in rats. Nutr. Res. 27: 440-447.
  • [79] Ismail A., Linder M., Ghoul M. (1999) Optymization of butylgalactosidesynthesis by β-galactosidase from Aspergillus oryzae. Enz. Microb. Technol. 25:208-213.
  • [80] Ito M., Deguchi Y ., Miyamori A., Matsumoto K., Kikuchi H., Matsumoto K.,Kobayashi Y., Yajiama T., Kan T. (1990) Effects of administration of galactooligosaccharides on the human faecal microflora, stool weight and abdominal sensation. Microb. Ecol. Health Dis. 3: 285-292.
  • [81] Itoh K., Adachi S., Itoh T., Toba T. (1992) Properties of β-galactosidase of Lactobacillus kefiranofaciens K -1 isolated from keflf grains. Lett. Appl. Microbiol. 15: 232-234.
  • [82] Iwasaki K., Nakajima M., Nakao S. (1996) Galacto-oligosaccharide Production from Lactose by an Enzymic Batch Reaction Using 13-Galactosidase. Process Biochem. 31: 69-76.
  • [83] Jacobs L.R., Lupton J.R. (1984) Effects of dietary fibers on rat large bowel mucosal growth and cell proliferation. Am. J. Phys. 246: G378-G385.
  • [84] Jarczyk A., Berdowski J.B. (1999) Przetwórstwo owoców i warzyw. Część 1. WSiP, Warszawa, 20-31.
  • [85] Johnson I.T., Gee J.M. (1986) Gastrointestinal adaptation in response to soluble non-available polysaccharides in the rat. Brit. J. Nutr. 55: 497-505.
  • [86] Jonas R., Silveira M.M. (2004) Sorbitol can be produced not only chemically but also biotechnologically. Appl. Biochem. Biotechnol. 118: 321-336.
  • [87] Jorgensen F., Ransen O.C., Stougaard P. (2001) High-efficiency synthesis of oligosaccharides with a truncated β-galactosidase from Bifidobacterium bifidum. Appl. Microbiol. Biotechnol. 57: 647-652.
  • [88] Jurado E., Camacho F., Luzon G., Vicaria J.M. (2002) A new kinetic model proposed for enzymatic hydrolysis of lactose by a β-galactosidase from Kluyveromycesfragilis. Enz. Microb. Technol. 31: 300-309.
  • [89] Juven B.J., Barefoot S.F., Pierson M.D., McCaskill L.R., Smith B. (1998) Growth and survival of Listeria monocytogenes in vacuum-packaged ground beef inoculated with Lactobacillus alimentarius FloraCarn L-2. J. Food Protect. 61:551-556.
  • [90] Kasprzycka-Guttman T., Semeniuk B., Myslioski A., Wilczura R. (1992) Wydzielanie kwasu glukonowego z plynów pofermentacyjnych. Przemysł Chemiczny 71: 184-186.
  • [91] Katayama K. (2004) Ammonia metabolism and hepatic encephalopathy. Hepatology Res. 30S: S71-S78.
  • [92] Khare S.K., Gupta M.N. (1988) Preparation of concanavalin A β-galactosidase conjugate and its application in lactose hydrolysis. J. Biosci. 13: 47-54.
  • [93] Kieburg C., Lindborst T.K., Kfen V. (1998) Enzymatic glycosylation of branched symmetrical non-carbohydrate polyols. J. Carbohydr .Chem. 17: 1239-1247.
  • [94] Kim C.S., Ji E.-S., Oh D.-K. (2004) A new kinetic model of recombinant β-galactosidase from Kluyveromyces lactis for both hydrolysis and transgalactosylation reactions. Biochem. Biophys. Res. Commun. 316: 738-743.
  • [95] Kim T.-K., Park D.-C., Lee Y.-R. (1997) Synthesis of glucosyl-sugar alcohols using glycosyltransferases and structural identification of glucosyl-maltitol. J. Microbiol. Biotechnol. 7: 310-317.
  • [96] Kim T.-K., Park D.-C., Lee Y.-H. (1998) Synthesis of transglucosylated xylitol using cyclodextrin glucanotransferase and its stimulating effect on growth of Bifidobacterium. Korean J. Appl. Microbiol. Biotechnol. 26: 442-449.
  • [97] Kimura K., Matsumoto K., Ishihara Ch., Rarada K., Miyagi A. (1995) Structure determination of galacto-oligosaccharides by pyridylamination and NMR spectroscopy. Carbohydr. Res. 270: 33-42.
  • [98] Kivikoski J., Pitkanen I., Nurmi J. (1992) Crystal structure of lactitol (4-0-β-D-galactopyranosyl-D-glucitol) trihydrate. Carbohydr. Res. 232: 189-195.
  • [99] Klewicki R., Król B. (1999) Applicability of polyethylene glycols .to crystallization of gluconic acid calcium salts and bioconversion of glucose to calcium gluconate. Pol. J. Food Nutr. Sci. 8/49: 71-79.
  • [100] Klewicki R., Król B., Ronert K., Kaczmarski T., Łukomska L., Klimczak A., Lorenc B. (2000) Wdrożenie technologicznej metody otrzymywania glukonianu wapnia sposobem enzymatycznym. Praca wykonana na zlecenie POLF ARMEX w Kutnie. Dane niepublikowane.
  • [101] Knopf F.C., Okos M.R., Foots D.A., Syverson A. (1979) Optimization of a lactose hydrolysis process. J. Food Sci. 44: 896-900.
  • [102] Kołodziejczyk K., Król R., Klewicki R. (1995) The preparation of the β-galactosyl oligosaccharides concentrates (OLS) from lactose. Carbohydrate Bioengineering Meeting, Elsinore, Denmark- poster.
  • [103] Krol R. (1984) Crystallization of calcium gluconate. W Industrial Crystallization 84 (ed. Iancic S.I. & de long E.I.) Elsevier Science Publishers B.V., Amsterdam, Netherlands, 425-428.
  • [104] Król R., Klewicki R. (2004) Sposób enzymatyczny wytwarzania glukonianu wapnia. Patent PL187741.
  • [105] Król R., Klewicki R. (2005) Wytwarzanie koncentratow fruktooligosacharydow (FOS) o zróżnicowanym składzie oligomerycznym z wykorzystaniem enzymatycznej biokonwersji sacharozy. Żywność. Nauka. Technologia. Jakość. 2(43): 5-22.
  • [106] Ladero M., Santos A., Garcia J.L., Carrascona A.V., Pessela R.C.C., Garcia-Ochoa F. (2002) Studies on the activity and stability of β-galactosidases from Thennus sp strain T2 and from Kluyveromyces fragilis. Enz. Microb. Technol.30: 392-405.
  • [107] Ladero M., Santos A., Garcia-Ochoa F. (2000) Kinetic modeling of lactose hydrolysis with an immobilized β-galactosidase from Kluyveromyces fragilis. Enz. Microb. Technol. 27: 583-592.
  • [108] Leiva M.H.L., Guzman M. (1995) Formation of oligosaccharides during enzymic hydrolysis of milk whey permeates. Process Biochem. 30: 757-762.
  • [109] Leroy F., De Voyst L. (2004) Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci. Technol. 15: 67-78.
  • [110] Lin H.C., Visek W.J. (1991) Large intestinal pH and ammonia in rats: dietary fat and protein interaction. J. Nutr. 121: 832-843.
  • [111] Lin S.-J., Wen C.-V., Liao J.-C., Cho W.-S. (2001) Screening and production of erythritol by newly isolated osmophilic yeast-like fungi. Process Biochem. 36:1249-1258.
  • [112] Lind D.L., Daniel R.M., Cowan D.A., Morgan H.W. (1989) β-Galactosidase from a strain of the anaerobic therophile, Thennoanaerobacter. Enz. Microb. Technol. 11: 180-186.
  • [113] Linden G., Lorient D. (1999) New ingredients in food processing. Woodhead Publishing Limited, Cambridge, Anglia, 219-231.
  • [114] Lio S.-Q. (2003) Practical implications of lactate and pyruvate metabolism by lactic acid bacteria in food and beverage fermentations. Int. I. Food Microbiol. 83:115-131.
  • [115] Lovry O.H., Rosebroogh N.J., Farr A.L., Randall R.J. (1951) Protein measurement with the Folin phenol reagent. J. BioI. Chem. 193: 265-275.
  • [116] Lo J.X. (1992) Magnesium chelation inactivates 13-galactosidase in -20°C storage. Biotechniques 12: 177-181.
  • [117] Lopton J .R. (2004) Microbial degradation products influence colon cancer risk: the butyrate controversy. J. Nutr. 134: 479-482.
  • [118] Macias M.E.N. de, Pesce de Ruiz Holgado A.A., Oliver G., Manca de Nadra M.C., Strasser de Sa ad A.M. (1983) Isolation and properties of β-galactosidase of a strain of Lactobacillus helveticus isolated from a natural whey starter. J. Appl. Biochem. 5: 275-281.
  • [119] Mahoney R.R. (1998) Galactosyl-oligosaccharide formation during lactose hydrolysis: a reviev. 63: 147-154.
  • [120] Maizena GmbH (1971) German Patent. Auslegeschrift 2133428.
  • [121] Makras Lo, Triantafyllou V., Fayol-Messaoudi D., Adriany T., Zoumpopoulou G., Tsakalidu Eo, Servin A., De Vuyst L. (2006) Kinetic analysis of the antibacterial activity of probiotic lactobacilli towards Salmonella enterica serovar Typhimurium reveals a role for lactic acid and other inhibitory compounds. Res. Microbiol. 157: 241-247.
  • [122] Marteau P., Flourie B. (2001) Tolerance to low-digestible carbohydrates: symptomatology and methods. Brit. I. Nutr. 85 (Suppll): S17-S21.
  • [123] Martinez-Villaluenga C., Cardelle-Cobas A., Corzo N., 0lano A., Villamiel M. (2008) Optimization of conditions for galactooligosaccharide synthesis during lactose hydrolysis by β-galactosidase from Kluyveromyces lactis (Lactozym 3000 L HP G). Food Chem. 107: 258-264.
  • [124] Masini A., Efrati C., Merli M., Attili A.F., Amodio P., Ceccanti M., Riggio 0. (1999) Effect of lactitol on blood ammonia responseto oral glutamine challenge in cirrhotic patients: evidence for an effect of nonabsorbable disaccharides on small intestine ammonia generation. Am. J. Gastroenterol. 94: 3323-3327.
  • [125] Matella N.J., Dolan K.D., Lee Y.S. (2006) Comparison of galactooligosaccharide production in free-enzyme ultrafiltration and in immobilized-enzyme systems. J. Food Sci. 71: 363.
  • [126] Mateo C., Monti R., Pessela B.C.C., Fuentes M., Torres R., Guisan JoM., Fernandez-Lafuente R. (2004) Immobilization of lactase from Kluyveromyces lactis greatly reduces the inhibition promoted by glucose. Full hydrolysis of lactose in milk. Biotechnol. Prog. 20: 1259-1262.
  • [127] Matsue S., Miyawaki 0. (2000) Influence of water activity and aqueous solvent ordering on enzyme kinetics of alcohol dehydrogenase, lysozyme, and β-galactosidase. Enz. Microb. Technol. 26: 342-347.
  • [128] Matsumoto K., Okonogi S. (1990) Characterization and utilization of β-galactosidase from lactic acid bacteria and bifidobacteria. Ipn. J. Dairy Food Sci. 39: 239-248. [129] Maugard T., Gaunt D., Legoy M.D., Besson To (2003) Microwave-assisted synthesis of galacto-oligosaccharides from lactose with immobilized β-galactosidase from Kluyveromyces lactis. Biotechnol Lett. 25: 623-629.
  • [130] Mineo H., Hara H., Kikuchi H., Sakurai H., Tomita F. (2002) Various indigestible saccharides enhance net calcium transport from the epithelium of the small and large intestine of rats in vitro. J. Nutr. 131: 3243-3246.
  • [131] Mineo H., Hara H., Tomita F. (2001) Short-chain fatty acids enhance diffusional calcium transport in the epithelium of the rat cecum and colon. Life Sci. 69: 517-526.
  • [132] Mollet B., Rowland I. (2002) Functional foods: at the frontier between food and pharma. Curr. Opin. Biotechnol. 13: 483-485.
  • [133] Mozaffar z., Nakanishi K., Matsuno R. (1986) Mechanism for reversible inactivation of immobilized β-galactosidase from Bacillus circulans during continuous production of galacto-oligosaccharides. Appl. Microbiol. Biotechnol. 25: 229-231.
  • [134] Mozaffar Z., Nakanishi K., Matsuno R. (1989) Production of trisaccharide from lactose using β-galactosidase from Bacillus circulans modified by glutaraldehyde. Appl. Microb. Biotechnol. 31: 59-60.
  • [135] Mulimani V.H., Devendra S. (1998) Effect of soaking, cooking and crude α-galactosidase treatment on the oligosaccharide content of red gram flour. Food Chem. 61: 475-479.
  • [136] Munro I.C., Bernt W.O., Borzelleca J.F., Flamm G., Lynch B.S., Kennepohl E., Baer E.A., Modderman J. (1998) Erythritol: An interpretive summary of biochemical, metabolic, toxicological and clinical data. Food Chem. Toxicology 36: 1139-1174.
  • [137] Mussatto S.I., Mancilha I.M. (2007) Non-digestible oligosaccharides: a review. Carbohydrate Polymers 68: 587-597.
  • [138] Nagano H., Omori M., Shoji Z., Kawaguchi T., Arai M. (1992) Purification and Characterization of β-Galactosidase from Enterobacter cloacae GAO. Biosci. Biotech. Biochem. 56: 674-675.
  • [139] Naidu A.S., Xie X., Leumer D.A., Harrison S., Burrill M.J., Fonda E.A. (2002) Reduction of sulfide, ammonia compounds, and adhesion properties of Lactobacillus casei strain KE99 in vitro. Curr. Microbiol. 44: 196-205.
  • [140] Nakanishi K., Matsuno R., Torii K., Yamamoto K., Kamikubo T. (1983) Properties of immobilized β-D-galactosidase from Bacillus circulans. Enzyme Microb. Technol. 5: 115-120.
  • [141] Nakano H., Okabe T., Hashimoto H., Sakaguchi G. (1990) Incidence of Clostridium botulinum in honey of various origins. Jpn. J. MOO. Sci. Biol. 43: 183-195.
  • [142] Nakao M., Harada M., Kodama Y., Nakayama T., Shibano Y., Amachi T. (1994) Purification and characterization of a thermostable β-ga1actosidase with high transgalactosylation activity from Saccharopolyspora rectivirgula. Appl. Microbiol. Biotechnol. 40: 657-663.
  • [143] Nakkharat P., Kulbe K.D., Yamabhai M., Haltrich D. (2006) Formation of galacto-oligosaccharides during lactose hydrolysis by a novel β-galactosidase from the moderately thermophilic fungus Talaromyces thermophilus. Biotechnol. J. 1: 633-638.
  • [144] Nicolas P., Gertsch I., Parisod C. (1984) Isolation and structure determination of an α-D-galactosyl-α-D-galactosyl-α-D-galactosyl-D-pinitol from the chick pea. Carbohydr. Res. 131: 331-334.
  • [145] Nigam P., Singh D. (1995) Processes for fermentative production of xylitol- a sugar substitute. Process Biochem. 30: 117-124.
  • [146] Nilsson K.G.I. (1987) A simple strategy for changing the regioselectivity of glycosidase-catalysed formation of disaccharides. Carbohydr. Res. 167: 95-103.
  • [147] Nilsson K.G.I. (1988) A simple strategy for changing the regioselectivity of glycosidase-catalysed formation of disaccharides: Part II, enzymic synthesis in situ of various acceptor glycosides. Carbohydr. Res. 180: 53-59.
  • [148] Nilsson U., Jagerstad M. (1987) Hydrolysis of lactitol, maltitol and palatinit by human intestinal biopsies. Br. J. Nutr. 58: 199-206.
  • [149] Novo Nordisk AlS, Dania (1988) Oznaczanie aktywnosci glukooksydazy. Metoda analityczna AF 26611-GB.
  • [150] Novo Nordisk AlS, Dania (1990) Lactozym -informacja o produkcie.
  • [151] Novozymes AlS, Dania (2001) Lactozym- informacja o produkcie (Special Food / 2001-08279-01).
  • [152] NRC (1995) Nutrient Requirements of Laboratory Animals. 4TH ed., National Research Council, National Academy Press, Washington, DC.
  • [153] Ohmori S., Ohno Y., Makino T., Kashihera T. (2004) Characteristics of erythritol and formulation of novel coating with erythritol termed thin-layer sugarless coating. Int. J. Pharmaceutics 278: 447-457.
  • [154] Ohtsuka K., Tanoh A., Ozawa 0., Kanematsu T., Uchida T., Shinke R. (1990) Purification and properties of a β-galactosidase with high galactosyl transfer activity from Cryptococcus laurenti OKN-4. J. Ferment. Bioeng. 70: 301-307.
  • [155] Onishi N., Tanaka T. (1995) Purification and properties of a novel thermostable galacto-oligosaccharide-producing β-galactosidase from Sterigmatomyces elviae CBS8119. Appl. Environ. Microbiol. 61: 4026-4030.
  • [156] Otha A., Ohtsuki M., Baba S., Hirayama M., Adachi T. (1998) Comparison of the nutritional effect of fructo-oligosaccharides of different sugar length in rat. Nutr. Res. 18: 109-120.
  • [157] Oyarzabal O.A., Conner D.E. (1996) Application of direct-fed-microbial bacteria and fructooligosaccharides for Salmonella control in broilers during feed withdrawal. Poultry Sci. 75: 186-190.
  • [158] Papanikolaou S. (2001) Enzyme-catalyzed synthesis of alkyl-β-glucosides in a water-alcohol two-phase system. Bioresource Technol. 77: 157-161.
  • [159] Pastuszewska B., Kowalczyk J., Ochtabińska A. (2000) Dietary carbohydrates affect caecal fermentation and modify nitrogen excretion patterns in rats I. Studies with protein-free diets. Arch. Anim. Nutr. 53: 207-225.
  • [160] Povelainen M., Miasnikov A. (2007) Production of xylitol by metabolically engineered strains of Bacillus subtilis. I. Biotechnol. 128: 24-31.
  • [161] Prenosil J.E., Stuker E., Bourne J.R. (1987) Formation of Oligosaccharides during Enzymatic Lactose: Part I: State of Art. Biotechnol. Bioeng. 30: 1019-1025.
  • [162] Prenosil J.E., Stuker E., Bourne J.R. (1987) Formation of Oligosaccharides during Enzymatic Lactose Hydrolysis and Their Importance in a Whey Hydrolysis Process: Part II: Experimental. Biotechnol. Bioeng. 30: 1026-1031.
  • [163] Rao R.S., Jyothi C.P., Prakasham R.S., Sarma P.N., Rao L.V. (2006) Xylitol production from corn fiber and sugarcane bagasse hydrolysates by Candida tropicalis. Bioresource Techol. 97:1974-1978.
  • [164] Rastall R.A., Bucke C., Adlard M. W .(1991) Synthesis of hetero-oligo-saccharides by glucoamylase in reverse. Biotechnol. Lett. 13: 501-504.
  • [165] Rastall R.A., Maitin V. (2002) Prebiotics and synbiotics: towards the next generation. Curr. Opinion Biotechnol. 13: 490-496.
  • [166] Reid G., Sanders M.E., Gaskins H.R., Gibson G.R., Mercenier A., Rastall R., Robertfroid M., Rowland I., Cherbut C., Klaenhammer T.R. (2003) New scientific paradigms for probiotics and prebiotics. J. Clin. Gastroenterol. 37:105-118.
  • [167] Reuter S., Nygaard A.R., Zimmermann W. (1999) β-Galactooligosaccharide synthesis with β-galactosidase from Sulfolobus solfataricus, Aspergillus oryzae, and Escherichia coli. Enz. Microb. Technol. 25: 509-516.
  • [168] Richter G., Heinecker H. (1979) Conversion of glucose into gluconic acid by means of immobilized glucose oxidase. Starch/Starke 31: 418-422.
  • [169] Ronda F., Gomez M., Blanco C.A., Caballero P.A. (2005) Effect of polyols and nondigestible oligosaccharides on the quality of sugar-free sponge cakes. Food Chem. 90: 549-555.
  • [170] Rowland I.R., Tanaka R. (1993) The effects of transgalactosylated oligosaccharides on gut flora metabolism in rats associated with a human faecal microflora. J. Appl. Bacteriol. 74: 667-674.
  • [171] Rugh S. (1982) A comparison of the formation of intermediary products during lactose hydrolysis with free and immobilized thermophilic lactase in whey permeate. Appl. Biochem. Biotechnol. 7: 27-29.
  • [172] Rutkowski A., Gwiazda S., Dąbrowski K. (2003) Kompendium dodatków do żywności. Hortimex, Konin, 397-404.
  • [173] Saarela M., Hallamaa K., Mattila-Sandholm T., Maitto J. (2003) The effect of lactose derivatives lactulose, lactitol and lactobionic acid on the functional and technological properties of potentially probiotic Lactobacillus strains. Int. Dairy J 13: 291-302.
  • [174] Santos A., Ladero M., Garcia-Ochoa F. (1998) Kinetic modeling of lactose hydrolysis by a β-galactosidase from Kluyveromices fragilis. Enz. Microb. Technol. 22: 558-567.
  • [175] Sato M., Nakamura K., Nagano H., Vagi V., Koizumi K. (1992) Synthesis of glucosyl-inositol using a CGTase, isolation and characterization of the positional isomers, and assimilation profiles for intestinal bacteria. Biotechnol. Lett. (1992) 14: 659-664.
  • [176] Sauerbrei B., Thiem J. (1992) Galactosylation and glucosylation by use β-galactosidase. Tetrahedron Lett. 33: 202-204.
  • [177] Scheppach W., Luehrs H., Menzel T. (2001) Beneficial health effects of low-digestible carbohydrate consumption. Brit. J. Nutr. 85 (Suppl 1): S23-S30.
  • [178] Schiweck H. (1991) Isomalt (Palatinit). W Handbuch Suessungsmittel: Eigenschaften und Anwendung. (ed. von Rymon Lipinski G.-W., Schiweck H.) B. Behr's Verlag GmbH & Co., Hamburg, Niemcy, 325-352.
  • [179] Schroeder S., Schmidt U., Thiem J., Kowalczyk J., Kunz M., Vogel M. (2004) Synthesis of oligosaccharides as potential novel food components and upscaled enzymatic reaction employing the β-galactosidase from bovine testes. Tetrahedron 60: 2601-2608.
  • [180] Sekimata M., Ogura K., Tsumuraya V., Hashimoto V., Vamamoto S. (1989) A β-Galactosidase from Radish (Raphanus sativus L.) Seeds. Plant Physiol. 90:567-574.
  • [181] Shahbazi A., Mims M.R., Li V., Shirley V., Ibrahim S.A., Morris A. (2005) Lactic acid production from cheese whey by immobilized bacteria. Appl. Biochem. Biotechnol. 121-124: 529-540.
  • [182] Sheu D.-C., Li S.-V., Duan K.-J., Chen C.W. (1998) Production of galactooligosaccharides by β-galactosidase immobilized on glutaraldehyde-treated chitosan beads. Biotechnol. Tech. 12: 273-276.
  • [183] Shin H.-J., Park J.-M., Vang J.-W. (1998) Continuous production of galacto-oligosaccharides from lactose by Bullera singularis β-galactosidase immobilized in chitosan beads. Process Biochem. 33: 787-792.
  • [184] Shin H.-J., Vang J.-W. (1994) Galacto-oligosaccharide production by β-galactosidase in hydrophobic organic media. Biotechnol. Lett. 16: 1157-1162.
  • [185] Sigma Chemical Co. (1997) Biochemikalia i odczynniki chemiczne do badań w naukach przyrodniczych.
  • [186] Silva S.S., Santos J.C., Carvalho W., Aracava K.K., Vitolo M. (2003) Use of a fluidized bed reactor operated in semi-continuous mode for xylose-to-xylitol conversion by Candida guilliermondi immobilized on porous glass. Process Biochem. 38: 903-907.
  • [187] Silveira M.M., Jonas R. (2002) The biotechnological production of sorbitol. Appl. Microbiol. Biotechnol. 59: 400-408.
  • [188] Siso M.I.G. (1996) The biotechnological utilization of cheese whey: a review. Bioresource Technol. 57: 1-11.
  • [189] Slade L., Levine H. (1986) Non-equilibrium behaviour of small carbohydrate-water systems. Pure Appl. Chem. 60: 1841-1864.
  • [190] Smart J.B. (1991) Transferase reactions of the β-galactosidase from Streptococcus thermophilus. Appl. Microbiol. Biotechnol. 34: 495-501.
  • [191] Smart J.B., Richardson B. (1987) Molecular properties and sensitivity to cations of β-galactosidase from Streptococcus thermophilus with four enzyme substartes. Appl. Microbiol. Biotechnol. 26: 177-185.
  • [192] Solvay-Pharma (2004) Lactulose concentrate USP. Certificate of analysis.
  • [193] Splechtna B., Nguyen T., Steinboeck M., Kulbe K.D., Lorenz W., Haltrich D. (2006) Production of prebiotic Galacto-Oligosaccharides from lactose using β-galactosidases from Lactobacillus reuteri. J. Agric. Food Chem. 54: 4999-5006.
  • [194] Splechtna B., Nguyen T., Zehetner R., Lettner H.P., Lorenz W., Haltrich D. (2007) Process development for the production of prebiotic galacto-oligo-saccharides from lactose using β-galactosidase from Lactobacillus sp. Biotechnol. J. 2: 1-6.
  • [195] Splechtna B., Petzelbauer I., Baminger U., Haltrich D., Kulbe K.D., Nidetzky B. (2001) Production of lactose-free galacto-oligosaccharide mixture by using selective enzymatic oxidation of lactose into lactobionic acid. Enz. Microb. Technol. 29: 434-440.
  • [196] Stevenson D.E., Stanley R.A., Furneaux R.H. (1993) Optimization of alkyl β-D-galactopyranoside synthesis from lactose using commercially available β-galactosidase. Biotechnol. Bioeng. 42: 657-666.
  • [197] Stolarczyk A. (2001) Rola oligosacharydów w żywieniu niemowląt. Nowa Pediatria 27(4).
  • [198] Szczodrak J. (2000) Hydrolysis of lactose in whey permeate by immobilized β-galactosidase from Kluyveromycesfragilis. J. Mol. Catal. B: Enzym. 10: 631-637.
  • [199] Takeda Pharmaceutical Company (1990) New galacto-oligosaccharide alcohol preparation Japanese Patent JP 102283291.
  • [200] Tamboli C.P., Caucheteux Ch., Cortot A., Colombel J.-F., Desreumaux P. (2003) Probiotics in inflammatory bowel disease: a critical revive. Best Practice Res. Clin. Gastroenterol. 17: 805-820.
  • [201] Tanaka R., Takayama H., Mortomi M., Kuroshima To, Ueyama S., Matsumoto K., Kuroda A., Mutai M. (1983) Effects of administration of TOS and Bifidobacterium breve 4006 on the human fecal flora. Bifidobacteria Microflora 2: 17-24.
  • [202] Tomomatsu H. (1994) Health effects of oligosaccharides. Food Technol. 48: 61-65.
  • [203] Tuohy K.M., Probert H.M., Smejkal C.W., Gibson G.R. (2003) Using probiotics and prebiotics to improve gut health. DDT 8: 692-700.
  • [204] Turesky R.J., Lang L.P., Butler M.A., Teitel C.H., Kadlubar F.F. (1991) Metabolic activation of carcinogenic heterocyclic aromatic amines by human liver and colon. Carcinogenesis 12: 1839-1845.
  • [205] Valio Ltd., Finlandia (2005) The Valio hydrolysis process –specyfikacja produktu.
  • [206] van Leeuwen A.V. (1997) Po1yol-based antimicrobials. Trend Food Sci. Technol. 8: 176.
  • [207] van Zundert M., Hoffmann R. (1999) Lactose derivatization. Carbohydr. Europe 25: 28-31.
  • [208] Vogel R. (1991) Sorbit. W Handbuch Suessungsmittel: Eigenschaften und Anwendung. (ed. von Rymon Lipinski G.-W., Schiweck H.) R. Behr's Verlag GmbH & Co., Hamburg, Niemcy, 265-292.
  • [209] Voragen A.G.J. (1998) Technological aspects of functional food-related carbohydrates. Food Sci. Technol. 9: 328-335.
  • [210] Vulevic J., Rastall R.A., Gibson G.R. (2004) Developing a quantitative approach for determining the in vitro prebiotic potential of dietary oligosaccharides. FEMS Microbiol. Lett. 236: 153-159.
  • [211] Wallenfels K., Malhotra O.P. (1960) Reta-galactosidase. W The enzymes. (Royer P.D. red). Academic Press, New York.
  • [212] Waszkiewicz-Robak B. (1999) Substancje słodzące. W Żywność wygodna i żywność funkcjonalna. (Świderski F. red). WN-T, Warszawa, 95-99.
  • [213] Weber F.L., Banwell J.G., Fresard K.M., Cummings J.H. (1987) Nitrogen in fecal bacterial, fiber, and soluble fractions of patients with cirrhosis: effects of lactulose and lactulose plus neomycin. J. Lab. Clinic. Med. 110: 256-263.
  • [214] Winkelhausen E., Kuzmanova S. (1998) Microbial conversion of D-xylose to xylitol. J. Ferment. Rioeng. 86: 1-14.
  • [215] Wright R.S., Anderson J.W., Bridges S.R. (1990) Propionate inhibits.hepatocyte lipid synthesis. Proc. Soc. Exp. Riol. Med. 195: 26-29.
  • [216] Yamashita K., Kawai K., ltakura M. (1984) Effect of fructooligosaccharides on blood glucose and serum lipids in diabetic subjects. Nutr. Res. 4: 961-966.
  • [217] Yanahira S., Kobayashi T ., Suguri T ., Nakakoshi M., Miura S., Ishikawa S., Nakajima I. (1995) Formation of oligosaccharides from lactose by Bacillus circulans beta-galactosidase. Riosci. Riotechnol. Biochem. 59: 1021-1026.
  • [218] Yanahira S., Morita M., Aoe S., Suguri T., Nakajima I. (1997) Effects of lactitol-oligosaccharides on calcium and magnesium absorption in rats. J. Nutr. Sci. Vitaminol.43: 123-132.
  • [219] Yanahira S., Morita M., Aoe S., Suguri T., Nakajima I., Deya E. (1995) Effects of lactitol-oligosaccharides on the intestinal microflora in rats. J. Nutr. Sci. Vitaminol. 41: 83-94.
  • [220] Yanahira S., Suguri T., Yakabe T., Ikeuchi Y., Hanagata G., Deya E. (1992) Formation of oligosaccharides from lactitol by Aspergillus oryzae β-D-galactosidase. Carbohydr. Res. 232: 151-159.
  • [221] Yang B.Y., Montgomery R. (1996) Alkaline degradation of glucose: effect of initial concentration of reactants. Carbohydr. Res. 280: 27-45.
  • [222] Yang S.T., Tang I.C. (1988) Lactose hydrolysis and oligosaccharide formation catalyzed by β-galactosidase. Ann. NY Academy Sci. 542: 417-422.
  • [223] Ye W.N., Combes D. (1991) Effect of glucose oxidase concentration on its thermostability in the presence ofpolyols. Biotechnol. Lett. 13: 421-426.
  • [224] Younes H., Garleb K., Behr S., Remesy C., Demigne C. (1995) Fermentable fibers or oligosaccharides reduce urinary nitrogen excretion by increasing urea disposal in the rat caecum. J. Nutr. 125: 1010-1016.
  • [225] Yun J.W., Kim D.H. (1998) A comparative study of mannitol production by two lactic acid bacteria. J. Ferment. Bioeng. 85: 203-208.
  • [226] Zarate G., Chaia A.P., Oliver G. (2002) Some characteristics of practical relevance of the β-galactosidase from potential probiotic strains of Propionibacterium acidipropionici. Anaerobe 8: 259-267.
  • [227] Zarate S., Lopez-Leiva M.H. (1990) Oligosaccharide Formation During Enzymatic Lactose Hydrolysis: A Literature Review. J. Food Protection 53: 262-268.
  • [228] Zheng P., Yu H., Sun Z., Ni V., Zhang W., Fan V., Xu V. (2006) Production of galacto-oligosaccharides by immobilized recombinant β-galactosidase from Aspergillus candidus. Biotechnol. J. 1: 1464-1470.
  • [229] Zhou Q.Z.K., Chen X.D. (2001) Effects of temperature and pH on the catalytic activity of the immobilized β-galactosidase from Kluveromyces lactis. Biochem. Eng. J. 9: 33-40.
  • [230] Zokaee F., Kaghazchi T., Zare A., Soleimani M.: (2002) Isomerization of lactose to lactulose - study and comparison of three catalytic systems. Process Biochem. 37: 629-635.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0004-0012
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.