Tytuł artykułu
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
It is known that a frachet space F can be realized as a projective limit of a sequence of Banach spaces Ei. The space Kc(F) of all compact, convex subsets of a Frechet space, F, is realized as a projective limit of the semilinear metric spaces Kc(Ei). Using the notion of Hukuhara derivative for maps with values in Kc(F), we prove the local and global existence theorems for an initial value problem associated with a set differential equation.
Wydawca
Czasopismo
Rocznik
Tom
Strony
103--113
Opis fizyczny
Bibliogr. 7 poz.
Twórcy
autor
autor
autor
- Naval Academy of Greece. Section of Mathematics, Xatzikyriakion, Piraeus 185 39 Greece, ggalanis@snd.edu.gr
Bibliografia
- [1] Galanis, G. N., On a type of linear differential equations in Frechet spaces, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24(3) (1997), 501-510.
- [2] Galanis, G. N., Bhaskar, T. Gnana, Lakshmikantham, V., Palamides, P. K., Set valued functions in Frechet spaces: continuity, Hukuhara differentiability and applications to set differential equations, Nonlinear Anal. 61(4) (2005), 559-575.
- [3] Galanis, G. N., Palamides, P. K., Nonlinear differential equations in Frechet spaces and continuum cross-sections, An. Stiint. Univ. Al. I. Guza Iasi Mat. (N.S.) 51(1) (2005), 41-54.
- [4] Hukuhara, M., Integration of measurable maps with compact, convex set values, Funk-cial. Ekvac. 10 (1967), 205-23.
- [5] Lakshmikantham, V., Bhaskar, T. Gnana, Devi, J. Yasundhara, Theory of Set Differential Equations in a Metric Space, Cambridge Scientific Publ., Cambridge, 2006.
- [6] Schaeffer, H. H., Topological Vector Spaces, Springer-Verlag, Berlin, 1980.
- [7] Tolstonogov, A., Differential Inclusions in a Banach Space, Kluwer Acad. Publ., Dor-drecht, 2000.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0004-0009