Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We introduce "probabilistic" and "stochastic Hilbertian structures". These seem to be a suitable context for developing a theory of "quantum Gaussian processes". The Schauder system is utilised to give a Levy-Ciesielski representation of quantum (bosonic) Brownian motion as operators in Fock space over a space of square summable sequences. Similar results hold for non-Fock, fermion, free and monotone Brownian motions. Quantum Brownian bridges are defined and a number of representations of these are given.
Wydawca
Czasopismo
Rocznik
Tom
Strony
275--290
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
autor
- Probability and Statistics Department. University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, England, applebaum@sheffield.ac.uk
Bibliografia
- [1] Accardi, L., Frigerio, A., Lewis, J. T., Quantum stochastic processes, Publ. Res. Inst. Math. Sci. 18 (1982), 97-133.
- [2] Applebaum, D., The strong Markov property for fermion Brownian motion, J. Funct. Anal. 65 (1986), 273-291.
- [3] Biane, P., Calcul stochastique non-commutatif (in French), in: "Lectureson Probability Theory" (Saint-Flour, 1993), Lecture Notes in Math. 1608, Springer-Verlag, Berlin, 1995, 1-96.
- [4] Biane, P., Quelques proprietes du mouvement brownien non-commutatif. Hommage a P. A. Meyer et J. Neveu (in French), Asterisque 236 (1996), 73-101.
- [5] Biane, P., Speicher, R., Stochastic calculus with respect to free Brownian motion and analysis on Wigner space, Probab. Theory Related Fields 112 (1998), 373-409.
- [6] Bożejko, M., Speicher, R., An example of a generalized Brownian motion, Comm. Math. Phys. 137 (1991), 519-531.
- [7] Carothers, N. L., A Short Course on Banach Space Theory, London Math. Soc. Stud. Texts 64, Cambridge Univ. Press, Cambridge, 2005.
- [8] Cockroft, A. M., Hudson, R. L., Quantum mechanical Wiener processes, J. Multivariate Anal. 7 (1977), 107-124.
- [9] Cushen, C. D., Hudson, R. L., A quantum-mechanical central limit theorem, J. Appl. Probab. 8 (1971), 454-469.
- [10] Hsu, E., Analysis on path and loop spaces, in: "Probability Theory and Applications" , Princeton, NJ, 1996, IAS/Park City Math. Ser. 6, Amer. Math. Soc., Providence, RI, 1999, 277-347.
- [11] Huang, Z., Yan, J., Introduction to Infinite Dimensional ,Stochastic Analysis, Math. Appl. 52, Kluwer Acad. Publ., Dordrecht, 2000.
- [12] Hudson, R. L., Lindsay, J. M., A non-commutative martingale representation theorem for non-Fock quantum Brownian motion, J. Funct. Anal. 61 (1985), 202-221.
- [13] Hudson, R. L., Parthasarathy, K. R., Quantum Ito's formula and stochastic evolution, Comm. Math. Phys. 93 (1984), 301-323.
- [14] Lindsay, J. M., Quantum stochastic analysis -an introduction, in: "Quantum Independent Increment Processes I", Lecture Notes in Math. 1865, Springer, Berlin, 2005, 181-271.
- [15] Malliavin, P., Stochastic Analysis, Springer- Verlag, Berlin-Heidelberg, 1997.
- [16] McKean, H. P., Jr., Stochastic Integrals, Academic Press, New York-London, 1969.
- [17] Messiah, A., Quantum Mechanics: Volume 1, North-Holland, Amsterdam, 1961.
- [18] Meyer, P. A., Quantum Probability for Probabilists, 2nd ed., Lecture Notes in Math. 1538, Springer-Verlag, Berlin-Heidelberg, 1995.
- [19] Meyer, Y., Wavelets: Algorithms and Applications (translated from the French by R. D. Ryan), Society for Industrial Applied Mathematics (SIAM), Philadelphia, PA, 1993.
- [20] Muraki, N., Noncommutative Brown.ian motion in monotone Fock space, Comm. Math. Phys. 183 (1997), 557-570.
- [21] Parthasarathy, K. R., An Introduction to Quantum Stochastic Calculus, Birkhaeuser Verlag, Basel, 1992.
- [22] Reyuz, D., Yor, M., Continuous Martingales and Brownian Motion, Grundlehren Math. Wiss. 293, Springer-Verlag, Berlin, 1999.
- [23] Steele, J. M., Stochastic Calculus and Financial Applications, Appl. Math. 45, Springer-Verlag, New York, 2001.
- [24] von Neumann, J., On infinite direct products, Compositio Math. 6(1) (1938), 1-77.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0002-0042