PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Levy-Ciesielski expansion for quantum Brownian motion and the construction of quantum Brownian bridges

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We introduce "probabilistic" and "stochastic Hilbertian structures". These seem to be a suitable context for developing a theory of "quantum Gaussian processes". The Schauder system is utilised to give a Levy-Ciesielski representation of quantum (bosonic) Brownian motion as operators in Fock space over a space of square summable sequences. Similar results hold for non-Fock, fermion, free and monotone Brownian motions. Quantum Brownian bridges are defined and a number of representations of these are given.
Wydawca
Rocznik
Strony
275--290
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
autor
  • Probability and Statistics Department. University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, England, applebaum@sheffield.ac.uk
Bibliografia
  • [1] Accardi, L., Frigerio, A., Lewis, J. T., Quantum stochastic processes, Publ. Res. Inst. Math. Sci. 18 (1982), 97-133.
  • [2] Applebaum, D., The strong Markov property for fermion Brownian motion, J. Funct. Anal. 65 (1986), 273-291.
  • [3] Biane, P., Calcul stochastique non-commutatif (in French), in: "Lectureson Probability Theory" (Saint-Flour, 1993), Lecture Notes in Math. 1608, Springer-Verlag, Berlin, 1995, 1-96.
  • [4] Biane, P., Quelques proprietes du mouvement brownien non-commutatif. Hommage a P. A. Meyer et J. Neveu (in French), Asterisque 236 (1996), 73-101.
  • [5] Biane, P., Speicher, R., Stochastic calculus with respect to free Brownian motion and analysis on Wigner space, Probab. Theory Related Fields 112 (1998), 373-409.
  • [6] Bożejko, M., Speicher, R., An example of a generalized Brownian motion, Comm. Math. Phys. 137 (1991), 519-531.
  • [7] Carothers, N. L., A Short Course on Banach Space Theory, London Math. Soc. Stud. Texts 64, Cambridge Univ. Press, Cambridge, 2005.
  • [8] Cockroft, A. M., Hudson, R. L., Quantum mechanical Wiener processes, J. Multivariate Anal. 7 (1977), 107-124.
  • [9] Cushen, C. D., Hudson, R. L., A quantum-mechanical central limit theorem, J. Appl. Probab. 8 (1971), 454-469.
  • [10] Hsu, E., Analysis on path and loop spaces, in: "Probability Theory and Applications" , Princeton, NJ, 1996, IAS/Park City Math. Ser. 6, Amer. Math. Soc., Providence, RI, 1999, 277-347.
  • [11] Huang, Z., Yan, J., Introduction to Infinite Dimensional ,Stochastic Analysis, Math. Appl. 52, Kluwer Acad. Publ., Dordrecht, 2000.
  • [12] Hudson, R. L., Lindsay, J. M., A non-commutative martingale representation theorem for non-Fock quantum Brownian motion, J. Funct. Anal. 61 (1985), 202-221.
  • [13] Hudson, R. L., Parthasarathy, K. R., Quantum Ito's formula and stochastic evolution, Comm. Math. Phys. 93 (1984), 301-323.
  • [14] Lindsay, J. M., Quantum stochastic analysis -an introduction, in: "Quantum Independent Increment Processes I", Lecture Notes in Math. 1865, Springer, Berlin, 2005, 181-271.
  • [15] Malliavin, P., Stochastic Analysis, Springer- Verlag, Berlin-Heidelberg, 1997.
  • [16] McKean, H. P., Jr., Stochastic Integrals, Academic Press, New York-London, 1969.
  • [17] Messiah, A., Quantum Mechanics: Volume 1, North-Holland, Amsterdam, 1961.
  • [18] Meyer, P. A., Quantum Probability for Probabilists, 2nd ed., Lecture Notes in Math. 1538, Springer-Verlag, Berlin-Heidelberg, 1995.
  • [19] Meyer, Y., Wavelets: Algorithms and Applications (translated from the French by R. D. Ryan), Society for Industrial Applied Mathematics (SIAM), Philadelphia, PA, 1993.
  • [20] Muraki, N., Noncommutative Brown.ian motion in monotone Fock space, Comm. Math. Phys. 183 (1997), 557-570.
  • [21] Parthasarathy, K. R., An Introduction to Quantum Stochastic Calculus, Birkhaeuser Verlag, Basel, 1992.
  • [22] Reyuz, D., Yor, M., Continuous Martingales and Brownian Motion, Grundlehren Math. Wiss. 293, Springer-Verlag, Berlin, 1999.
  • [23] Steele, J. M., Stochastic Calculus and Financial Applications, Appl. Math. 45, Springer-Verlag, New York, 2001.
  • [24] von Neumann, J., On infinite direct products, Compositio Math. 6(1) (1938), 1-77.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0002-0042
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.