PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

W2,kCln-best aproximatiion of a γ-regular function

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Is this paper, we construct a γ-regular Cln-minimal function systems in W2,kΓ (Ω,Cln ∩ker Dγ(Ω,Cln), the generalized Bergman space of Cln-valued functions in the Sobolev space W2,kΓ (Ω) which are used in the best way to approximate null solutions of the inhomogeneous Direc operator.
Wydawca
Rocznik
Strony
259--273
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
autor
  • Department of Mathematics and Computer Science, Virginia State University, Petersburg, Va 23806, USA, dlakew@vsu.edu
Bibliografia
  • [1] Guerlebeck, K., Sprossig, W., Quaternionic Analysis and Elliptic Boundary Value Problems, Birkhauser Verlag, Basel, 1990.
  • [2] Guerlebeck, K., Sprossig, W., Quaternionic and Clifford Analysis for Physicists and Engineers, John Wiley, Cichester, 1997.
  • [3] Kisil, V., Connection between different function theories in Clifford analysis, Adv. Appl. Clifford Algebras 5(1) (1995), 63-74
  • [4] Lakew, D. A., On the perturbed Dirac opemtor, preprint.
  • [5] Lakew, D. A., Elliptic BVPs, Cln-complete function systems and the Clifford π-operator, Ph. D. Dissertation, University of Arkansas, Fayetteville, 2000.
  • [6] Lakew, D. A., Ryan, J., Clifford analytic-complete function systems for unbounded domains, Math. Methods Appl. Sci. 25 (2002), 1527-1539.
  • [7] Lakew, D. A., Ryan, J., Complete function systems and decomposition results arising in Clifford analysis, Comput. Methods Funct. Theory 2(1) (2002), 215-228.
  • [8] Mikhlin, S. G., Prosdorf, S., Singular Integral Operators, Academic Verlag, Berlin, 1980.
  • [9] Ryan, J., Intrinsic Dirac opemtors in Cn, Adv. Math. 118 (1996), 99-133.
  • [10] Ryan, J., Applications of complex Clifford analysis to the study of solutions to generalized Dirac and Klein-Gordon equations with holomorphic potentials, J. Differential Equations 67 (1987), 295-3229.
  • [11] Smith, K. T., Primierof Modern Analysis, Undergrad. Texts Math., Springer Verlag, New York, 1983.
  • [12] Triebel, H., Interpolation Theory, Function Spaces, Differential Operators, North-Holland Math. Library, Amsterdam, 1978.
  • [13] Xu, Z., A function theory for the operator D - λ, Complex Var. Theory Appl. 16 (1991), 27-42.
  • [14] Xu, Z., Helmholtz equations and boundary value problems in partial differential equations with complex analysis, Pitman Res. Notes Math. Ser. 262 (1992), 204-214.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0002-0041
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.