PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelowanie propagacji fal radiowych do projektowania naziemnych systemów łączności bezprzewodowej

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
PL
Rozprawa poświęcona jest empirycznym i teoretycznym modelom propagacji fal radiowych przeznaczonym do projektowania naziernnych systemów łączności bezprzewodowej. Badając wlasności tych modeli posłużono się symula- cjami komputerowymi oraz wynikami pomiarów przestrzennych rozkładów natężenia pola w różnych środowiskach propagacji. W części dotyczącej metod empirycznych omówiono wyniki analizy własności modeli najczęściej stosowanych w praktyce, takich jak model Okumury, ITU-370, ITU-1546, Ibrahima-Parsonsa i Kozono-Watanabe, a także modelu półempirycznego Andersona. Wykazano między innymi, że wykorzystanie w tych modelach ilościowych i jakościowych informacji o ukształowaniu terenu i zabudowie prowadzi do zrnniejszenia błędów symulacji dla warunków terenowych i architektonicznych typowych dla Polski. Zaproponowano dwa modele błędów charakteryzu- jących dokladność geometryczną map i pokazano, w jaki sposób te błędy wplywają na dokładność wyników symulacji pola elektromagne- tycznego. Przedstawiono wyniki własnych prac nad modelami teoretycznymi, głównie wielkoczęstotliwościowymi, a porównawczo także małoczęstotliwościowymi. Wykazano potrzebę modelowania zjawiska dyfrakcji dla uzyskania dobrej dokładności symlulacji zjawisk propagacyjnych w środowisku zurbanizowanym. Omówiono ograniczenia zakresu stosowalności optyki geometrycznej i jednorodnej teorii dyfrakcji wynikające ze stosunku długości fali do rozmiarów obiektów oraz niespełnionego założenia lokalności zjawisk propagacyjnych. Zaprezentowano oryginalne wyniki dotyczące modelowania zaburzenia propagacji fal radiowych w otoczeniu ciała człowieka. Podano warunki poprawnego wykonywania pomiarów natężenia pola przeprowadzanych w ruchu, zasady doboru sprzętu dla pojazdu pomiarowego, metod rejestracji i przetwarzania uzyskanych danych. Przedstawiono zestaw własnych programów komputerowych umożliwiający statystyczną obróbkę wyników pomiarów, w którym między innymi zaimplementowano oryginalny algorytm skladania wyników z wielokrotnych przejazdów trasy pomiarowej. Ponieważ część badań empirycznych wykonywano w komorze bezodbicio- wej i na otwartym polu pomiarowym, to zbadano na ile stanowiska te mogą być uważane za idalne. Zaproponowano klasyfikację porządkującą metody wyznaczania znormalizowanej tłumiennosci (NSA) stanowisk pomiarowych. Opisano oryginalne koncepcje dotyczące automatyzacji pomiaru znormalizowanej tłumienności stanowisk pomiarowych, takich jak komory bezodbiciowe i otwarte pola pomiarowe.
EN
This dissertation presents a study of empirical and theoretical radio wave propagation models for the design of terrestrial wireless communication systems. Properties of such models are investigated by means of computer simulations and measurement of spatial field strength distribution in various propagation environments (indoor, urban, suburban, open area, etc.). In the part devoted to empirical models, properties of most frequently used propagation models such as Okumura, ITU-R P.370/P.1546, Ibrahim-Parsons, and Kozono-Watanabe as well as semi-empirical Anderson model are analyzed and discussed. The study reveals that the application of qualitative and quantitaive information on terrain features and terrain usage in the models results in reduced prediction errors for terrain irregularity and architecture typical of Poland. Two models of errors characterizing geometric accuracy of maps are pro- posed and it is shown how these errors influence field strength prediction results. Results concerning theoretical models (mainly high-frequency, but also low-frequency for comparison) are presented. It is demonstrated that diffraction must be taken into account in order to achieve good accuracy of propagation prediction in urban areas and indoor. Limitations of the geometrical optics, geometrical theory of diffraction, and uniform theory of diffraction with respect to the ratio of the wavelength to dimensions of obstacles as well as violation of the locality postulate are studied using the example of a circular perfectly conducting cylinder. Results concerning scattering of radio waves on the human body are presented. Stipulations for the radio survey measurements in motion, measurement equipment selection, data logging and processing are shown. A software package is described for the statistical processing of measurement results, which implements an original algorithm for merging measurements taken fron several runs over the same path. Measurements were conducted both in an anechoic chamber and in an open area test site and therefore validation methods for these environments are discussed. A review of of normalized site attenuation (NSA) measurement methods is proposed. Original concepts for automation of NSA measurements are presented.
Rocznik
Tom
Strony
3--198
Opis fizyczny
Bibliogr. 284 poz., tab., wykr.
Twórcy
autor
  • Politechnika Łódzka. Wydział Elektrotechniki i Elektroniki
Bibliografia
  • Adawi N. S., Bertoni H. L., Child J. R., Daniel W. A., Dettra J. E., Eckert R. P., Flath E. H., Jr., Forrest R. T., Coverage prediction for mobile radio systems operating in the 800/900 MHz frequency range, IEEE Transactions on Vehicular Technology, Vol. 37, Issue l, February 1988, pp. 3-72.
  • Allsebrook K., Parsons J. D., Mobile radio propagation in British cities at frequencies in the VHF and UHF bands, IEEE Transactions on Vehicular Technology, Vol. 26, Issue 4, November 1977, pp. 313-323.
  • Alwafie F., Kosiło T., Characteristics of radio wave propagation inside building using ray tracing model, Krajowa Konferencja Radiotelekomunikacji, Radiofonii i Telewizji KKRRiT2001, Poznań, 14-16 maja, 2001, str.: 13.4-1 - 13.4-4.
  • Anantha V., Taflove A., Calculation of diffraction coefficients of three-dimensional infinite conducting wedges using FDTD, IEEE Transactions on Antennas and Propagation, Vol. 46, Issue 11, November 1998, pp.1755-1756.
  • Anderson H.R., A ray-tracing propagation model for digital broadcast systems in urban areas, IEEE Transactions on Broadcasting, Vol. 39, Issue 3, September 1993, pp. 309-317.
  • Anderson H. R., A second generation 3-D ray-tracing model using rough surface scatter-ing, IEEE Vehicular Technology Conference, Vol. l, 28 April-1 May 1996, pp. 46-50.
  • Anderson H.R., Building corner diffraction measurements and predictions using UTD, IEEE Transactions on Antennas and Propagation, Vol. 46, Issue 2, February 1998, pp. 292-293.
  • Athanasiadou G. E., Nix A. R., McGeehan J. P., Indoor 3D ray tracing predictions and their comparison with high resolution wideband measurements, IEEE Vehicular Technology Conference, Vol. l, 28 April-l May 1996, pp. 36-40.
  • Athanasiadou G. E., Nix A. R.,McGeehan J. P., A ray tracing algorithm for microcellular wideband propagation modelling, IEEE Vehicular Technology Conference, Vol. l, 25-28 Jul 1995, pp. 261-265.
  • Barbiroli M., Carciofi C., Falciasecca G., Frullone M., Grazioso P., A Measurement-Based Methodology for the Determination of Validity Domains of Prediction Models in Urban Environment, IEEE Transactions on Vehicular Technology, Vol. 49, No. 5, September 2000, pp. 1508-1515.
  • Barron M. Theoretical normalized site attenuation calculations by spreadsheetanalysis, IEEE International Symposium on Electromagnetic Compatibility, Vol. 2, 2000, pp.927-932 Bem D.J., Anteny i rozchodzenie się fal radiowych, WNT, 1973.
  • Bem D.J., Modelowanie systemów radiokomunikacyjnych, Politechnika Wrocławska, 1985.
  • Bem D.J., Nawrocki M.J., Więckowski T.W., Zieliński R.J., Modeling methods for WCDMA network planning, IEEE Vehicular Technology Conference, YTC 2001 Spring, Vol. 2, 6-9 May 2001, pp.962-966.
  • Bernardi P., Cicchetti R., An Accurate UTD Model for the Analysis of Complex Indoor Radio Environments in Microwave WLAN Systems, IEEE Transactions on Antennas and Propagation, Vol. 52, No. 6, June 2004, pp. 1509-1520.
  • Bertoni H.L., Honcharenko W., MacelL.R., Xia H.H., UHF propagation prediction for wireless personal Communications, Proceedings of the IEEE, Vol. 82, Issue 9, Septem-berl994,pp.!333-1359.
  • Biglieri E.; Proakis J.; Shamai S., Fading channels: information-theoretic and communications aspects, IEEE Transactions on Information Theory, Vol. 44, Issue 6, October 1998,pp.2619-2692.
  • Bochenek K., Metody analizy pól elektromagnetycznych, Państwowe Wydawnictwo Naukowe, 1961.
  • Bojakowski, Smart antenna for GSM base station, praca dyplomowa, Instytut Elektroniki, Politechnika Łódzka, 2007.
  • Bouche D. P., Molinet F. A., Mittra R., Asymptotic and hybrid techniques for electro-magnetic scattering, Proceedings of the IEEE, Vol. 81, Issue 12, December 1993, pp. 1658-1684.
  • Brewster D.,A Treatise on Optic, London, 1831.
  • Brocki K., Wpływ dokładności baz danych o terenie na dokładność komputerowej predykcji natężenia pola elektrycznego w systemach radiokomunikacji ruchomej lądowej, praca dyplomowa, Instytut Elektroniki, Politechnika Łódzka, 1998.
  • Bryant J.H., The first century of microwaves-1886 to 1986, IEEE Transactions on Microwave Theory and Techniąues, Vol. 36, Issue 5, May 1988, pp.830-858.
  • Bullington K., Radio propagation for vehicular Communications, IEEE Transactions on Vehicular Technology, Vol. 26, Issue 4, November 1977, pp. 295-308.
  • Butterworth K. S., Sowerby K. W, Williamson A. G., Implications of propagation modeling on the design of a DS-CDMA in-building mobile communication system, IEEE 47th Vehicular Technology, Vol. 3, 4-7 May 1997, pp. 1420-1424.
  • Catedra M. F., Pérez-Arriaga J., Cell Planning for Wireless Communications, Artech House, Boston-London, 1999.
  • Catedra M.F., Pérez J., Saez de Adana F., Gutierrez O., Efficient ray-tracing techniques for three-dimensional analyses of propagation in mobile Communications: application to picocell and microcell scenarios, IEEE Antennas and Propagation Magazine, Vol. 40, Issue 2, April 1998, pp.15-28.
  • Chang-Fa Yang, Boau-Cheng Wu, Chuen-Jyi Ko, A ray-tracing method for modeling indoor wave propagation and penetration, IEEE Transactions on Antennas and Propagation, Vol. 46, Issue 6, June 1998, pp.907-919.
  • Charalambous C.D., Wireless Communication Channels: Modeling, Analysis, Simulations and Applications, 41st IEEE CDC, Las Vegas, Nevada, 9 December 2002.
  • Chen S.H, Jeng S.K, SBR image approach for radio wave propagation in tunnels with and without traffic, IEEE Transactions on Vehicular Technology, Vol. 45, Issue 3, August 1996, pp. 570-578.
  • Chen S.H, Jeng S.K, SBR image approach for radio wave propagation in indoor environments with metallic furniture, IEEE Transactions on Antennas and Propagation, Vol. 45, Issue l, January 1997, pp. 98-106.
  • Chen S.H, Jeng S.K, A Novel propagation modeling for microcellular communication in urban environments, IEEE Transactions on Vehicular Technology, Vol. 46, Issue 4 November 1997, pp. 1021-1026.
  • Chen Z., Enders A., A critique on traceability in site validation measurements, 1EEI International Symposium on Electromagnetic Compatibility, ISEMC 2007, 9-13 Jul; 2007, pp. 1-6.
  • Chen Z., Foegelle M., A numerical investigation of ground plane effects on biconical antenna factor, IEEE International Symposium on Electromagnetic Compatibility, Denver, 1998, pp. 802-806.
  • Chen Z., Foegelle M, An improved method for determining Normalized site attenuation using log periodic dipole arrays, IEEE International Symposium on Electromagnetic Compatibility, Vol. 2, 2000, pp. 511-516.
  • Chen Z., Foegelle M., Complex fit Normalized site attenuation using complex magni-tude and phase patterns IEEE International Symposium on Electromagnetic Compatibility, 2004, 9-13 August 2004, pp. 747-751.
  • Cheung J.C.S., Beach M.A., McGeehan J.P., Network planning for third-generation mobile radio systems, IEEE Communications Magazine, Vol. 32, Issue 11, November 1994,pp.54-59.
  • Christensen E., Paulsen S.E., Improved coverage and interference predictions using line-of-sight detection correction, IEEE 46th Vehicular Technology Conference, Vol. 3, 28 April-1 May 1996, pp. 1638-1642.
  • Cichocki J., Kołakowski J., Pomiary systemów szerokopasmowych (UMTS, WLAN, UWB), Przegląd telekomunikacyjny, nr 6/2005, str. 220-230.
  • Cichon D.J., Becker T.C., Dottling M., Ray optical prediction of outdoor and indoor coverage in urban macro- and micro-cells, IEEE Vehicular Technology Conference, 1996. Vol. l, 28 April-1 May 1996, pp.41-45.
  • Clarke R. H., A statistical theory of mobile radio reception, Bell Sys. Tech. J., Vol. 47, no. 6, July-Aug. 1968, pp. 957-1000.
  • COST 231 Final Report, Digital Mobile Radio: COST 231 View on the Evolution Towards 3rd Generation Systems, Turin, April 17-19, 1996.
  • Cotanis N.D., Estimating Radio Coverage for New Mobile Wireless Services Data Col-lection and Pre-processing, ICT2001, Bucharest, Romania, June 2001.
  • Czarnecki M., Analiza i kompensacja wpływu opadu na propagację fal radiowych w komunikacji satelitarnej, praca doktorska, Politechnika Łódzka, 2003.
  • Davidson A., Hill C., Measurement of building penetration into medium buildings at 900 and 1500 MHz, IEEE Transactions on Vehicular Technology, Vol. 46, Issue l, February 1997. pp.161-168.
  • Derat B., Bolomey J.C., Various optimization problems of electromagnetic power ab-sorption in homogeneous heterogeneous phantoms, IEEE Transactions on Electromagnetic Compatibility, Vol. 48, No. 4, November 2006, pp. 641-647.
  • Długosz T., Trzaska H., Pomiary PEM w polu bliskim a dalekim, Przegląd telekomunikacyjny, nr 8-9/2006, str. 251-253.
  • Donaldson B. P., Fattouche M., Donaldson R. W., Characterization of in-building UHF wireless radio communication channels using spectral energy measurements, IEEE Transactions on Antennas and Propagation, Vol. 44, Issue l, January 1996, pp. 80-86.
  • Dyson J., Measurement of near fields of antennas and scatterers, IEEE Transactions on Antennas and Propagation, Vol. 21, Issue 4, July 1973, pp.446-460.
  • Edfors O., Sandell M., Beek J-J., Landstrom D., SjobergD., An Introduction to Orthogonal Frequency- Division Multiplexing, 1996, http://epubl.luth.se.
  • Egli J.J., Radio Propagation Above 40Mc Over Irregular Terrain, Proceedings of the IRE, Vol. 45, October 1957, pp. 1383-1391.
  • Erceg Y., Ghassemzadeh S., Taylor M, Li D., Schilling D.L., Urban/suburban out-of-sight propagation modelling, IEEE Communications Magazine, Vol. 30, Issue 6, June 1992,pp.56-61.
  • Erceg V., Rustako A.J., Jr., Roman R. S., Diffraction around corners and its effects on the microcell coverage area in urban and suburban environments at 900 MHz, 2 GHz, and 6 GHz, IEEE Transactions on Vehicular Technology, Vol. 43, Issue 3, August 1994, pp. 762-766.
  • EURO-COST (European Cooperation in the field of Scientific and Technical research), Urban transmission loss models for mobile radio in the 900- and l ,800-MHz bands (Re-vision 2), COST 231, September 1991, pp. 1-9.
  • Fleury B.H., Leuthold P.E., Radiowave Propagation in Mobile Communications: An Overview of European Research, IEEE Communications Magazine, February 1996, Vol. 34, No. 2, pp. 70-81.
  • Fortune S., Efficient algorithms for prediction of indoor radio propagation, 48th IEEE Vehicular Technology Conference, VTC98, Vol. l, 18-21 May 1998, pp.572-576.
  • Friis H. T., A Note on a Simple Transmission Formula, Proceedings of the IRE, Vol. 34, Issue 5, May 1946, pp. 254-256.
  • Fügen T., Maurer J., Kayser T., Wiesbeck W., Verification of 3D ray-tracing with non-directional and directional measurements in urban macrocellural environments, IEEE 63rd Vehicular Technology Conference, VTC 2006-Spring, Vol. 6, 2006, pp. 2661-2665.
  • Garn H.F., Mullner W., Kremser H., A Critical Evaluation of Uncertainties Associated with the ANSI C63.5 Antenna Calibration method and a Proposal for Improvements, IEEE International Symposium on Electromagnetic Compatibility, August 17-21, 1992, pp. 485-490.
  • [a] Ghaddar M., Talbi L., Denidni T.A., Human body modelling for prediction of effect of people on indoor propagation channel, Electronics Letters, Vol. 40, Issue 25, 9 December 2004, Vol. 40, No. 25, pp. 1592-1594.
  • [b] Ghaddar M., Talbi L., Denidni T.A., Charbonneau A., Modeling Human Body Effects for Indoor Radio Channel Using UTD, Canadian Conference on Electrical and Computer Engineering, Vol. 3, 2-5 May 2004 pp. 1357-1360.
  • Giampaolo E., Bardati F., Sabbadini M., Preconditioned astigmatic beam tracing for urban propagation, IEEE Microwave and Wireless Components Letters, Vol. 13, No. 8, August 2003, pp. 296-298.
  • Gibson T.B., Jenn D.C., Prediction and measurement of wall insertion loss, IEEE Tram actions on Antennas and Propagation, Vol. 47, Issue l, January 1999, pp.55-57.
  • Gisin F, Using ANSI C63.5 Standard Site Method Antenna Factors for Verifying ANS C63.4 Site Attenuation Requirements, IEEE International Symposium on Electromagnetic Compatibility, Dallas, TX, August 9-13, 1993, pp. 313-31.
  • Gjonaj E., Bartsch M., Clemens M., Schupp S., Weiland T., High-Resolution Human Anatomy Models for Advanced Electromagnetic Field Computations, IEEE Transactions on Magnetics, Vol. 38, No. 2, March 2002, pp. 357-360.
  • Gorce J.-M., Runser K., Roche G., Deterministic Approach for Fast Simulations of Indoor Radio Wave Propagation, IEEE Transactions on Antennas and Propagation, Vo 55, No. 3.,March 2007, pp. 938-948.
  • Gordon W., A hundred years of radio propagation, IEEE Transactions on Antennas an Propagation, Vol. 33, Issue 2, February 1985, pp.126-130.
  • Green M.P., Wang S.S., Signal propagation model used to predict location accuracy c GSM mobile phones for emergency applications, IEEE Radio and Wireless Conference RAWCON2002, 11-14 August 2002, pp. 119-122.
  • Greenstein L. J., Erceg V. Yeh Y. S., Clark M. V., A new path-gain/delay-spread propagation model for digital cellular channels, IEEE Transactions on Vehicular Technology Vol. 46, Issue 2, May 1997, pp. 477-485.
  • Grubisic S., Carpes W.P., Lima C.B., Kue-Peng P., Ray-tracing propagation model using image theory with a new accurate approximation for transmitted rays through walls, IEEE Transactions on Magnetics, Vol. 42, No. 4, April 2006, pp. 835-838.
  • Grudziński E., Dokładność wyznaczania pól elektromagnetycznych w bezpośrednim otoczeniu struktur promieniujących, Krajowa Konferencja Radiokomunikacji, Radiofonii Telewizji, KKRRiT 2006, Poznań, 7-9 czerwca 2006, str. 267-271.
  • Grygorenko W., Redakcja i opracowanie map ogóloogeograficznych, Państwowe Przedsiębiorstwo Wydawnictw Kartograficznych, Warszawa, 1970.
  • Grzybkowski M.J., Metoda oszacowania tłumienia fali radiowej wnoszonego przez lasy, Krajowa Konferencja Radiotelekomunikacji, Radiofonii i Telewizji, KKRRiT 2001, Poznań, 14-16 maja, 2001, str. 13.6-1 - 13.6-4.
  • Grzybkowski M.J., Kowalski J., Kwolek J., Obliczenia propagacyjne dla systemu DRM Krajowa Konferencja Radiokomunikacji Radiofonii i Telewizji KKRRiT 2005, Kraków 15-17 czerwca 2005, str. 73-76.
  • Grzybkowski M.J., Michalak M.P., Waga M.T., Badania tłumienności fali radiowej w obszarach leśnych, Krajowa Konferencja Radiokomunikacji, Radiofonii i Telewizji KKRRiT 2004, Warszawa, 16-18 czerwca 2004, str. 169-172.
  • Gurdenli E., Huish P. W., Propagation measurement and modelling for digital cellular radio systems, Telecom Technology, Vol. 8, Issue l, January 1990, pp. 44-55.
  • Hali K., NSA using EXCEL '97 with GPIB allows making measurement and analysis less tedious, IEEE International Symposium on Electromagnetic Compatibility 2002,Vol. l, pp. 515-518.
  • Hansen F., Meno F. I., Mobile fading-Rayleigh and lognormal superimposed, IEEE Transactions on Vehicular Technology, Vol. VT-26,November 1977, pp. 332-335.
  • Harrington R.F., Matrix methods for Field Problems, Proc. IEEE, Vol. 55, pp. 136-49, Feb. 1967.
  • Harrington R.F., Field Computation by Moment Methods, IEEE Press Series on Electromagnetic Wave Theory, 1968.
  • Hassan-Ali M., Pahlavan K., A new statistical model for site-specific indoor radio propagation prediction based on geometric optics and geometric probability, IEEE Transactions on Wireless Communications, Vol. l, Issue l, January 2002, pp.112-124.
  • Hata M., Empirical formula for propagation loss in land mobile radio services, IEEE Transactions on Vehicular Technology, Vol. 29, Issue 3, August 1980, pp. 317-325.
  • Heaviside O. On the Forces, Stresses, and Fluxes of Energy in the Electromagnetic Field. Philosophical Transactions of the Royal Society of London 183 A, 1893, pp. 423-480.
  • Hertz H. Uber sehr schnelle electrische Schwingungen [with] Nachtrag zu der Abhandlung uber sehr schnelle electrische Schwingungen. Annalen der Physik und Chemie 31, 1887, pp. 421-448, 543-544.
  • Holloway C. L., Perini P. L., DeLyser R. R., Allen K. C., Analysis of composite walls and their effects on short-path propagation modelling, IEEE Transactions on Vehicular Technology, Vol. 46, Issue 3, Aug 1997, pp. 730-738.
  • Honcharenko W., Bertoni H. L., Transmission and reflection characteristics at concrete block walls in UHF bands proposed for future PCS, IEEE Transactions on Antennas and Propagation, Vol. 42, Issue 2, February 1994, pp. 232-239.
  • Honcharenko W., Bertoni H. L., Dailing J. L., Bilateral averaging over receiving and transmitting areas for accurate measurements of sector average signal strength inside buildings, IEEE Transactions on Antennas and Propagation, Vol. 43, Issue 5, May 1995, pp. 508-512.
  • Honcharenko W., Bertoni H. L., Dailing J. L., Qian J., Yee H. D., Mechanisms governing UHF propagation on single floors in modern office buildings, IEEE Transactions on Vehicular Technology, Vol. 41, Issue 4, November 1992, pp. 496-504.
  • Honcharenko W., Bertoni H. L., Dailing J., Mechanisms governing propagation between different floors in buildings, IEEE Transactions on Antennas and Propagation, Vol. 41, Issue 6, Jun 1993, pp. 787-790.
  • Honcharenko W., Bertoni H.L., Prediction of wideband RF propagation characteristics in buildings using 2D ray tracing, IEEE Conference on Vehicular Technology, 1995, Vol. 1,25-28 July 1995,pp.429-433.
  • Hosako L, Sekine N., Patrashin M., Saito S., Fukunaga K., Kasai Y., Baron P., Seta T., Mendrok, J., Ochiai, S. Yasuda H., At the Dawn of a New Era in Terahertz Technology, Proceedings of the IEEE, Volume 95, Issue 8, August 2007, pp. 1611-1623.
  • Huang X., Chen B., Cui L., Stamnes J J., Pastore R., Farwell M., Chin W., Ross J., Radio-propagation model based on the combined method of ray tracing and diffraction, IEEE Transactions on Antennas and Propagation, Vol. 45, No. 4, April 2006, pp. 1284-191.
  • Hufford G., The ITS irregular terrain model, version 1.2.2. The algorithm., NTIA Report, 1985.
  • Hwang Y., Zhang Y.P., Kouyoumjian R.G., Ray-optical prediction of radio-wave propagation characteristics in tunnel environments. l. Theory, IEEE Transactions on Antennas and Propagation, Vol. 46, Issue 9, September 1998, pp. 1328-1336.
  • Ibrahim M. F., Parsons J. D., Signal strength prediction in built-up areas. Part 1: Median signal strength, IEE Proceedings, 130, Part F, No. 5, 1983, pp. 377-384.
  • IEEE VTS Commitee on Radio Propagation Lee's Model, IEEE Transactions Veh. Tech YT-37; l(February 1988): 68 - 70. Part of Coverage Prediction for Mobile Radio Sys tems Operating in the 800/900 MHz Frequency Range.
  • Ikegami F., Yoshida S., Analysis of multipath propagation structure in urban mobile radio environments, IEEE Transactions on Antennas and Propagation, Vol. 28, Issue 4 July 1980, pp. 531-537.
  • Ikegami F., Yoshida S., Takeuchi T., Umehira M., Propagation factors controlling mean field strength on urban streets, IEEE Transactions on Antennas and Propagation, Vol 32, Issue 8, Aug 1984, pp. 822-829.
  • Jakes W. C., Editor, Microwave Mobile Communications, New York: John Wiley & Sons Inc, 1974.
  • Janiszewski J.M., Propagacja wewnątrz budynków, Krajowe Sympozjum Telekomunikacji, KST, Bydgoszcz 1996.
  • Jingming L., Wagen J.-F., Lachat E., A preliminary comparison of two propagation prediction methods for2-D microcells: ray tracing and TLM, IEEE Vehicular Technology Conference, 28 Apr-1 May 1996, Vol. l, pp. 31-35.
  • Joe W., Micro-cellular modelling when base station antenna is below roof tops, IEEE Trans, on Vehicular Technology, 8-10 Jun 1994, pp. 200-204.
  • Kamieniec M., Weryfikacja pomiarowa modeli propagacyjnych w zakresie częstotliwości poniżej 2 GHz w terenach zabudowanych, Instytut Łączności O/Wrocław
  • Kanatas A.G., Kountouris I.D., Kostaras G.B., Constantinou P., A UTD propagation model in urban microcellular environments, IEEE Transactions on Vehicular Technology, Vol. 46, Issue l, February 1997, pp.185-193.
  • Kapryński M., Modelowanie propagacji fal radiowych z zastosowaniem metod optyki geometrycznej i jednorodnej teorii dyfrakcji, praca dyplomowa, Wydział Elektrotechnik i Elektroniki, Politechnika Łódzka, 1997.
  • Karagiannidis G. K.; Sagias N. C.; Mathiopoulos P. T., N*Nakagami: A Novel Stochastic Model for Cascaded Fading Channels, IEEE Transactions on Communications, Vol 55, Issue 8, August 2007, pp. 1453-1458.
  • Karwowski A., Improving accuracy of FDTD modelling in biological applications, International Conference on Microwaves, Radar and Wireless Communications, M1KON-2004, Vol. 3, 17-19 May 2004, pp.857-860.
  • Karwowski A., Numerical modelling calculations for evaluating exposure to radiofrequency emissions from base station antennas, International Conference on Micro-waves, Radar and Wireless Communications, MIKON 2002, Vol. 3, 20-22 May 2002 pp.809-812.
  • [a] Katulski R.J., Kiedrowski A., Wyznaczanie tłumienia propagacyjnego w systemie dostępowym w warunkach miejskich, Przegląd Telekomunikacyjny, 11, 2003. str. 527-531.
  • [b] Katulski R.J., Kiedrowski A., Model COST231-Haty w warunkach pracy radiowego systemu dostępowego w mieście, Krajowa Konferencja Radiokomunikacji, Radiofonii i Telewizji, KKRRiT2003, Wrocław, 25-27 czerwca 2003, str. 259-262.
  • Katulski R.J., Kiedrowski A., Model COST 231 Walfisha-Ikegamiego w warunkach systemu dostępowego, Krajowa Konferencja Radiokomunikacji, Radiofonii i Telewizji, KKRRiT 2004, Warszawa, 16-18 czerwca 2004, str. 161-164.
  • [a] Katulski R.J., Kiedrowski A., Wyznaczanie tłumienia propagacyjnego w systemach dostępowych. Krajowa Konferencja Radiokomunikacji, Radiofonii i Telewizji, KKRRi 2005, Kraków, 15-17 czerwca 2005, str. 203-206.
  • [b] Katulski R.J, Kiedrowski A., Empirical formulas for determination of the propagation loss in the urban radio access links, IEEE Vehicular Technology Conference, Vol. 3, 25-28 September, 2005, pp. 1742-1746.
  • Katulski R.J., Lipka A., Turek K., Badania rozkładu mocy sygnału radiowego w sieciach WLAN, Krajowa Konferencja Radiokomunikacji, Radiofonii i Telewizji, KKRRiT2006, Poznań, 7-9 czerwca 2006, str. 323-326.
  • Kauschke U., Propagation and system performance simulations for the short range DECT system in microcellular urban roads, IEEE Transactions on Vehicular Technology, Vol. 44, Issue 2, May 1995, pp. 253-260.
  • Keller J.B, Geometrical Theory of Diffraction, Journal Opt. Soc. Am., Vol. 52, 1962, pp. 116-130.
  • Keller J. B., One hundred years of diffraction theory, IEEE Transactions on Antennas and Propagation, Vol. 33, Issue 2, February 1985, pp.123-126.
  • Kołosowski W., Wnuk M., Różański G., Analysis and measurement of EM field distribution in area where DECT system works, IEEE VTS 53rd Vehicular Technology Conference, VTC 2001 Spring, Vol. l, 6-9 May 2001, pp.484-488.
  • Kostanic, I.; Rudic, N.; Austin, M. Measurement sampling criteria for optimization of the Lee's macroscopic propagation model, Vehicular Technology Conference VTC 98, Vol. 1,18-21 May 1998, pp. 620 - 624.
  • Kouyoumjian R.G., Pathak P.H., A Uniform Geometrical Theory of Diffraction for an Edge in Perfectly Conducting Surface, Proc. IEEE, Vol. 62, No. 11, November 1974, pp. 1448-1461.
  • Kozlowski S., Yashchyshyn Y. Modelski J., Performance of MIMO System with Receiver Employing Phased Array Antennas, International Conference on CAD Systems in Microelectronics, CADSM'07, 19-24 February 2007 pp. 133-135.
  • Kozlowski S., Yashchyshyn Y. Modelski J., Phased Array Antennas in MIMO Receiver, International Conference on Microwaves, Radar & Wireless Communications, MIKON 2006,22-24 May 2006, pp.473-476.
  • Kozono S., Watanabe K., Influence of Environmental Buildings on UHF Land Mobile Radio Propagation, IEEE Transactions on Communications, Vol. 25, Issue 10, October 1977, pp. 1133-1143.
  • Królikowski J., Steckiewicz C., Matematyka: Wzory, definicje, tablice, WKiŁ, 1972.
  • Krzysztofik W., Horbatowski P., Projektowanie sieci bezprzewodowych WLAN i WPAN wewnątrz budynków - modele propagacyjne, Przegląd Telekomunikacyjny, nr 7/2007, str. 221-231.
  • Krzyżak K., Herko E., Wykorzystanie uproszczonych modeli propagacji fal radiowych do symulacji działania bezprzewodowych sieci komputerowych we wnętrzach budynków, Krajowa Konferencja Radiokomunikacji, Radiofonii i Telewizji, KKRRiT'2003, Wrocław, 25-27 czerwca 2003, str.149-152.
  • Kułak A., Michalec A., Zięba S., Propagacja fal elektromagnetycznych ELF w falowodzie ziemia-jonosfera, Krajowa Konferencja Radiotelekomunikacji, Radiofonii i Telewizji KKRRiT 2001, Poznań, 14-16 maja, 2001, str. 13.3-1 - 13.3-4.
  • Kułakowski P., The Multiple-Input Multiple-Output Systems in Slow and Fast Varying Radio Channels, praca doktorska, Akademia Górniczo-Hutnicza, Kraków, 2007.
  • Kułakowski P., Ludwin W., Zastosowanie metody ray tracing do symulacji systemu MIMO(4,4) w środowisku wewnątrz budynków, Krajowa Konferencja Radiokomunikacji, Radiofonii i Telewizji, KKRRiT 2004, Warszawa, 16-18 czerwca 2004. str. 165-168.
  • Kunz K.S., Luebbers R.J., The Finite Difference Time Domain Methods for Electromagnetics, CRC, 1993.
  • [a] Kurek K., Kosiło T., Modelski J., Analiza wpływu ruchu osób na właściwości kanału propagacyjnego wewnątrz budynku, Krajowa Konferencja Radiokomunikacji, Radiofonii i Telewizji, KKRRiT 2002, Gdańsk, 12-14 czerwca, 2002, str. 363-366.
  • [b] Kurek K., Yashchyshyn Y., Stefański K., Quasi-3d tool to analyse of the radio propagation channel, 14th International Conference on Microwaves, Radar and Wireless Communications, MIKON-2002, Vol. 3, 20-22 May 2002, pp. 865-868.
  • Kurek K., Modelski J., Analiza przestrzennego rozkładu sygnałów wielodrogowych propagujących wewnątrz pomieszczenia, Krajowa Konferencja Radiokomunikacji Radiofonii i Telewizji, KKRRiT2003, Wrocław, 25-27 czerwca 2003, str. 145-148.
  • Kurner T., Cichon D. J., Wiesbeck W., The influence of land usage on UHF wave propagation in the receiver near range, IEEE Transactions on Vehicular Technology, Vol. 46, Issue 3, August 1997, pp. 739-747.
  • Kurner T., Cichon D.J., Wiesbeck W., Concepts and results for 3D digital terrain-based wave propagation models: an overview, IEEE Journal on Selected Areas in Communications, Vol. 11, No.7, September 1993, pp. 1002-1012.
  • Kurner T., Cichon D.J., Wiesbeck W., Influence of the receiver near range in urban and forested areas in land mobile radio systems, IEEE Conference on Vehicular Technology, 8-10 June 1994, Vol. l, pp.190-194.
  • LaFortune J. F., Lecours M., Measurement and modeling of propagation losses in a building at 900MHz, IEEE Transactions on Vehicular Technology, Vol. 39, Issue 2, May 1990, pp. 101-108.
  • Landron O., Feuerstein M. J., Rappaport T. S., A comparison of theoretical and empirical reflection coefficients for typical exterior wall surfaces in a mobile radio environ-ment, IEEE Transactions on Antennas and Propagation, Vol. 44, Issue 3, March 1996, pp. 341-351.
  • Lee W.C.Y., Mobile Communications Design Fundamentals, John Wiley & Sons, New York, 1993.
  • Lee W.C.Y., Yeh Y. S., On Estimation of the Second-Order Statiscics of Log Normal Fading in Mobile Radio Environment, IEEE Transactions on Communications, Vol. 22, Issue 6, June 1974., pp. 869-873.
  • Leferink F.B.J., Groot-Boerle D.J., Puylaert B.R.M., OATS Emission Data Compared with Free Space Emission Data, IEEE 1995 International Symposium on Electromagnetic Compatibility, August 1995, Atlanta, GA, pp. 333-337.
  • Lewicki F., Reczek T., Więckowski T., Wykorzystanie pierwszej strefy Fresnela do wyznaczania tłumienia propagacyjnego, Krajowa Konferencja Radiokomunikacji, Radiofonii i Telewizji, KKRRiT2005, Kraków, 15-17 czerwca 2005, 199-202.
  • Lewicki M., Opracowanie i implementacja w postaci programu komputerowego algorytmu predykcji natężenia pola w centrach miast w paśmie UHF, praca dyplomowa, Instytut Elektroniki, Politechnika Łódzka, 1998.
  • Lim C.P., Lee M., Burkholder R.J., Volakis J.L., Marhefka R.J., 60 GHz indoor propagation studies for wireless Communications based on a ray-tracing method, Hindawi Publishing Corporation, EURASIP Journal on Wireless Communications and Networking, Vol. 2007.
  • Lo Y.T, Lee S.W., Antenna Handbook, Van Nostrand Reinhold, New York, Vol. l, 1993.
  • Lo T., Litva J., Leung H., A new approach for estimating indoor radio propagation characteristics, IEEE Transactions on Antennas and Propagation, Vol. 42, Issue 10, October 1994,pp. 1369-1376.
  • Ludwig A., Wire grid modeling of surfaces, IEEE Transactions on Antennas and Propagation, Vol. 35, Issue 9, September, 1987 pp. 1045-1048.
  • Luebbers R.J., Foose W.A., Reyner G., Comparison of GTD propagation model wide-band path loss simulation with measurements, IEEE Transactions on Antennas and Propagation, Vol. 37, Issue 4, April 1989, pp.499-505.
  • Łotoczko O., Sobolewski J., Więcek D., Więcek R., Analiza porównawcza metod propagacyjnych ITU-R P.370 oraz ITU-R P. 1546, Krajowa Konferencja Radiokomunikacji, Radiofonii i Telewizji, KKRRiT2003, Wrocław, 25-27 czerwca 2003, str. 263-266.
  • Maciel L. R., Bertoni H. L., Xia H. N., Unified approach to prediction of propagation over buildings for all ranges of base station antenna height, IEEE Transactions on Vehicular Technology, Vol. 42, Issue l, February 1993, pp. 41-45.
  • Marconi G. Wireless telegraphic communication, Nobel Lecture, December 11, 1909.
  • Mardini W., Kacprzak T., Symulacja propagacji fal radiowych w zróżnicowanych obszarach metodą sieci perkolacyjnych, Krajowa Konferencja Radiokomunikacji, Radiofonii i Telewizji, KKRRiT2005, Kraków, 15-17 czerwca 2005, str. 2007-210.
  • Mardini W., Kacprzak T., Symulacja propagacji fal radiowych z wykorzystaniem metody śledzenia wiązek, Radiokomunikacji, Radiofonii i Telewizji, KKRRiT 2006, Poznań, 7-9 czerwca 2006, str.263-266.
  • Marinier P., Delisle G.Y., Despins C.L., Temporal variations of the indoor wireles millimeter-wave channel, IEEE Transactions on Antennas and Propagation, Vol. 4 Issue 6, June 1998, pp.928-934.
  • Materka A. Projektowanie wielkosygnałowych układów mikrofalowych z tranzystorami polowymi typu MESFET, Zeszyty Naukowe, nr 468, Politechnika Łódzka, 1985.
  • Maxwell J. C. A Dynamical Theory of the Electromagnetic Field, Philosophical Transactions of the Royal Society of London, 155, 1865, pp. 459-512.
  • McConnell R.A., Derivation Of The Normalized Site Attenuation Mutual Coupling Correction Factor And An Improved Method Of Antenna Factor Determination, IEEE 1992 International Symposium on Electromagnetic Compatibility, 17-21 August, 1992 pp. 407-411.
  • McConnell R.A, A method of determining free space antenna factor on an open area test site, IEEE International Symposium on Electromagnetic Compatibility, Vol. 2, 2000, pp 499-504.
  • McNamara D.A., Pistorius C.W.I., Malherbe J.A.G., Introduction to the Uniform Geo-metrical Theory of Diffraction, 1990, Artech House.
  • Medeisis A., Kajackas A., On the use of the universal Okumura-Hata propagation prediction model in rural areas, IEEE 51st Vehicular Technology Conference Proceedings, VTC 2000-Spring, Vol. 3, 15-18 May 2000, pp. 1815-1818.
  • Medgyesi-Mitschang L., Dau-Sing Wang, Hybrid solutions for scattering from perfectly conducting bodies of revolution, IEEE Transactions on Antennas and Propagation, Vol. 31, Issue 4, July 1983, pp. 570-583.
  • Meloling J.H., Marhefka R.J., A caustic corrected UTD solution for the fields radiated by a source on a flat plate with a curved edge, IEEE Transactions on Antennas and Propagation, Vol. 45, Issue 12, December 1997, pp.1839-1849.
  • Michaeli A., Incremental diffraction coefficients for the extended physical theory of diffraction, IEEE Transactions on Antennas and Propagation, Vol. 43, Issue 7, July 1995,pp.732-734.
  • Młynarczyk J., Modelowanie jonosfery w oparciu o pomiary wykonane przez jonosondę, Krajowa Konferencja Radiokomunikacji, Radiofonii i Telewizji, KKRRiT 2002, Gdańsk, 12-14 czerwca 2002, str. 371-374.
  • Młynarczyk J., Kułak A., Analiza propagacyjna obserwowanych eksperymentalnie charakterystyk kanału radiowego HF, Krajowa Konferencja Radiokomunikacji, Radiofonii i Telewizji, KKRRiT2006, Poznań, 7-9 czerwca 2006, str. 251-255.
  • Modelski J., Jaszczyszyn E., Chaciński H., Majchrzak P., Pomiary parametrów anten, Oficyna Wydawnicza Politechniki Warszawskiej, 2004.
  • Mullner W., Garn H. , From NSA to Site-Reference Method for EMC Test Site Validation, IEEE International Symposium on Electromagnetic Compatibility, 2001, Vol. l, pp. 948-953.
  • Murch R.D., Sau J.H.M., Cheung K.W., Improved empirical modeling for indoor propagation prediction, IEEE Conference on Vehicular Technology, 1995, Vol. l, 25-28 July 1995,pp.439-443.
  • Nazar. Elfadhil, M.A salam, Al-Lawati A., Al-Quasmi O., Al-Gheithi M., Nadir Z., Modification of an open area Okumura-Hata propagation model suitable for Oman, 2005 IEEE Region 10 TENCON, November 2005, pp. 1-4.
  • Noga K., Jakość transmisji w kanale Rice'a dla odbioru z przełączaniem anten, Krajowa Konferencja Radiokomunikacji, Radiofonii i Telewizji, KKRRiT 2002, Gdańsk 12-14 czerwca 2002, str. 387-390.
  • Obayashi S., Zander J., A body-shadowing model for indoor radio communication environments, IEEE Transactions on Antennas and Propagation, Vol. 46, Issue 6, June 1998, pp.920-927.
  • Okumura Y., Ohmori E., Kawano T., Fukuda K., Field Strength and Its Variability in VHF and UHF Land-Mobile Radio Service, Rev. Elec. Commun. Lab., 16, pp. 825-873, September 1968.
  • Olivier C., Martens L., Optimal settings for narrow-band signal measurements used for exposure assessment around GSM base stations, IEEE Transactions on Instrumentation and Measurement, Vol. 54, Issue l, February 2005, pp. 311 - 317.
  • Olivier C., Martens L., Optimal Settings for Frequency-Selective Measurements Used for the Exposure Assessment Around UMTS Base Stations, IEEE Transactions on Instrumentation and Measurement, Vol. 56, Issue 5, October 2007 pp. 1901 - 1909.
  • Östlin E., Suzuki H., Zepernick H., Evaluation of a new effective antenna height definition in ITU-R recommendation P.1546-1, 2005 Asia-Pacific Conference on Communications, 3-5 October 2005, pp. 128-132.
  • Östlin E., Suzuki H., Zepernick H., Evaluation of the propagation model recommendation ITU-R P. 1546 for mobile services in rural Australia, (accepted for publication).
  • Östlin E., Zepernick H., Suzuki H., Evaluation of the new semi-terrain based propagation model recommendation ITU-R P. 1546, IEEE 58th Vehicular Technology Conference, VTC2003-Fall, Vol. l, 6-9 October 2003 pp. 114-118.
  • Pahlavan K., Levesque A.H., Wireless Information Networks, Wiley, 1995.
  • Paknys R.J., The near field of a wire grid model, IEEE Transactions on Antennas and Propagation, Vol. 39, Issue 7, July 1991, pp.994-999.
  • Parsons D., The Mobile Radio Propagation Channel, Pentech Press, London, 1992.
  • Passerini C.,A quality measure for ray-tracing algorithms, IEEE Transactions on Antennas and Propagation, Vol. 49, Issue 3, March 2001 pp.500-502.
  • Pathak P.H., Techniques for High-Frequency Problems, in Y.T.Lo, S.W.Lee, Antenna Handbook, Van Nostrand-Reinhold, New York, 1988.
  • Pathak P., Burnside W., MarhefkaR., A uniform GTD analysis of the diffraction of electromagnetic waves by a smooth convex surface, IEEE Transactions on Antennas and Propagation, Vol. 28, Issue 5, September 1980, pp.631-642.
  • Pattuelli R., Zingarelli V., Precision of the estimation of area coverage by planning tools in cellular systems, IEEE Persona! Communications, Vol. 7, Issue 3, June 2000, pp. 50-53.
  • Paunovic, D.S.; Stojanovic, Z.D.; Stojanovic, I.S. Choice of a suitable method for the prediction of the field strength in planning land mobile radio systems, IEEE Transactions on Vehicular Technology, Vol. 33, Issue 3, August 1984 pp. 259 - 265.
  • Pedersen K.I., Andersen J.B., Kermoal J.P., Mogensen P., A stochastic multiple-input-multiple-output radio channel model for evaluation of space-time coding algorithms, 52ndIEEE Vehicular Technology Conference, VTS-Fall VTC 2000, Vol. 2, 24-28 September 2000, pp.893-897.
  • Pelosi G., Selleri S., Ufimtsev P.Ya., Newton's observations of diffracted rays, IEEE Antennas and Propagation Magazine, Vol. 40, Issue 2, April 1998, pp.7-14.
  • Penzias A.A.,Wilson R.W., A Measurement of Excess Antenna Temperature at 4080 Mc/s, Astrophysical Journal, Vol. 142, 1965, pp.419^421.
  • Perez-Fontan F., Hernando-Rabanos J.M., Comparison of irregular terrain propagation models for use in digital terrain data based radiocommunication system planning tools, IEEE Transactions on Broadcasting, Vol. 41, Issue 2, Jun 1995, pp. 63-68.
  • Piazzi L., Bertoni H.L., Effect of terrain on path loss in urban environments for wireless applications, IEEE Transactions on Antennas and Propagation, Vol. 46, Issue 8, August 1998, pp. l138-1147.
  • Piesiewicz R., Kleine-Ostmann T., Krumbholz N., Mittleman D., Koch M., Kürner T. Terahertz characterisation of building materials, Electronics Letters, 1 st September 2005,Vol.41,No. 18.
  • Prasad M. V. S. N., Ahmad L, Comparison of some path loss prediction methods with YHF/UHF measurements, IEEE Transactions on Broadcasting, Vol. 43, Issue 4, December 1997, pp. 459-486.
  • Prata A., Jr., Misaligned Antenna Phase-Center Determination Using Measured Phase Patterns, IPN Progress Report 42-150, August 15, 2002, pp. 1-9.
  • Pues H., Dauwen J., Van Craenendonck M., Timmerman A., Schoonis J., Michielssen E., Numerical evaluation of site attenuation, sum of antenna factors and groundplane effects IEEE International Symposium on Electromagnetic Compatibility, 9-13 August 1993.
  • Rappaport T. S., Characterization of UHF multi path radio channels in factory buildings, IEEE Transactions on Antennas and Propagation, Vol. 37, Issue 8, August 1989, pp. 105-1069.
  • Rauscher C., Fundamentals of Spectrum Analysis, Rohde & Schwarz GmbH & Co. KG, 2001.
  • Remley K.A., Weisshaar A., Andersen H.R., Improved diffraction coefficients for lossy dielectric wedges, Electronics Letters, Vol. 35, Issue 21, 14 October 1999, pp. 1826-1827.
  • Rice S. O., Statistical properties of a sine wave plus random noise, Bell System Technical Journal, Vol. 27, January 1948, pp. 109-157.
  • Rizk K., Yalenzuela R., Fortune S., Chizhik D., Gardiol F., Lateral, full-3D and vertical plane propagation in microcells and small cells, IEEE Conference on Vehicular Technology, Vol. 2, 18-21 May 1998, pp.998-1003.
  • Rizk K., Wagen J.-F., Gardiol F., Two-dimensional ray-tracing modeling for propagation prediction in microcellular environments, IEEE Transactions on Vehicular Technology, Vol. 46, Issue 2, May 1997, pp. 508-518.
  • Roche G., Jaffres-Runser K., Gorce J.-M., On predicting Indoor WLAN coverage with a fast discrete approach, International Journal of Mobile Network Design and Innovation, Vol. 2, No. 2,2007, pp. 3-12.
  • Rouviere J.-F., Douchin N., Combes P.F., Diffraction by lossy dielectric wedges using both heuristic UTD formulations and FDTD, IEEE Transactions on Antennas and Propagation, Vol. 47, Issue 11, November 1999, pp.1702-1708.
  • Rouviere J.F., Douchin N., Combes P.F., Improvement of the UTD formulation for diffraction of an electromagnetic wave by a dielectric wedge, Electronics Letters, Vol. 33, Issue 5, 27 February 1997, pp.373-375.
  • Ruiz-Boque S., Fernandez M., Viladers M., Agusti R., Average power prediction in microcells, IEEE Conference on Vehicular Technology, 8-10 June 1994, Vol. l, pp. 220-224.
  • Salek S., Smith R.P., Transmitting site evaluation using a mobile spectrum measurement system, 50th Annual Broadcast Engineering Conference Proceedings, National Association of Broadcasters, 1996, pp. 278-285.
  • Sato K., Manabe T., Estimation of Propagation-Path Visibility for Indoor Wireless LAN Systems under Shadowing Condition by Human Bodies, 48th IEEE Vehicular Technology Conference, VTC98, Vol. 3, 18-21 May 1998, pp. 2109-2113.
  • Sato K., Manabe T., Polivka J., Ihara T., Kasashima Y., Yamaki K., Measurement of the complex refractive index of concrete at 57.5 GHz, IEEE Transactions on Antennas and Propagation, Vol. 44, Issue l, Jan. 1996, pp.35-40.
  • Seidel S. Y., Rappaport T. S., 914 MHz path loss prediction models for indoor wireless Communications in multi floored buildings, IEEE Transactions on Antennas and Propagation, Vol. 40, Issue 2, February 1992, pp. 207-217.
  • Seker S. S., YHF/UHF radiowave propagation through forests: modelling and experimental observations, IEE Proceedings H, Microwaves, Antennas and Propagation, Vol. 139, Issue l, February 1992, pp. 72-78.
  • Sengupta D.L., Sarkar T.K., Maxwell, Hertz, the Maxwellians, and the early history of electromagnetic waves, IEEE Antennas and Propagation Magazine, Vol. 45, Issue 2, April 2003, pp. 13-19.
  • Smith A.A., German R.F., Pate J.B., Calculation of Site Attenuation from Antenna Factors, IEEE Transactions on Electromagnetic Compatibility, Vol. EMC-24, No. 3, August 1982, pp. 316-322.
  • Smulders P.F.M., 60 GHz radio: prospects and future directions, Proceedings IEEE 10th Symposium on Communications and Vehicular Technology in the Benelux, November 2003, pp. 3-8.
  • Son, H.-W., Myung N.-H., A deterministic ray tube method for microcellular wave propagation prediction model, IEEE Transactions on Antennas and Propagation, Vol. M, Issue 8, Aug. 1999, pp.1344-1350.
  • [a] Staniec K., Deterministyczny model propagacji fal elektromagnetycznych w budynkach, Krajowa Konferencja Radiokomunikacji, Radiofonii i Telewizji, KKRRiT 2007, Gdańsk, 13-15 czerwca 2007, str.455-458.
  • [b] Staniec K., Wrażliwość deterministycznego modelu propagacyjnego na parametry EM wnętrza budynku, Krajowa Konferencja Radiokomunikacji, Radiofonii i Telewizji, KKRRiT2007, Gdańsk, czerwiec 2007, str. 459-462.
  • Stratis G., Anantha V., Taflove A., Numerical calculation of diffraction coefficients of generic conducting and dielectric wedges using FDTD, IEEE Transactions on Antennas and Propagation, Vol. 45, Issue 10, October 1997, pp.1525-1529.
  • Stringari S., Wilson R.R., Romagnosi and the discovery of electromagnetism, Rend. Fis. Acc. Lincei, s. 9, v. 11, 2000, 2, pp. 115-136.
  • Sugiura A., Formulation of Normalized Site Attenuation in Terms of Antenna Impedances, IEEE Transactions on Electromagnetic Compatibility. Vol. 32. No. 4, November 1990, pp. 257.
  • Sugiura A. Shinozuka T. Nishikata A. Correction Factors for Normalized Site Attenuation, IEEE Transactions on Electromagnetic Compatibility, Vol. 34, No. 4, November 1992, pp. 461-470.
  • Suzuki H., A statistical model of urban multipath propagation, IEEE Transactions on Communications, Vol. COM-25, 1977, pp. 673-680.
  • Szóstka J., Fale i anteny, Wydawnictwa Komunikacji i Łączności, Warszawa, 2000.
  • Szumny R., Kurek K., Modelski J., Pomiary kanału propagacyjnego na potrzeby systemu lokalizacji wysokiej rozdzielczości dla wnętrz, Krajowa Konferencja Radiokomunikacji, Radiofonii i Telewizji, KKRRiT2006, Poznań, 7-9 czerwca 2006, str. 305-308.
  • Szumny R., Kurek K., Yashchyshyn Y., Modelski J., Closely Spaced Paths Effect Mitigation for Indoor Location Systems, International Conference on Microwaves, Radar & Wireless Communications, MIKON-2006,22-24 May 2006, pp. 537-540.
  • Taflove A. And Hagness S. C., Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, Norwood, MA, 2000.
  • Talbi L., Human disturbance of indoor EHF wireless channel, Electronic Letters, 25th October 2001, Vol. 37, No. 22, pp. 1361-1363.
  • Tan S.Y., Ang T.W., Tan H.S., Measurement validation of ray-tracing propagation model on double-diffracted paths, IEEE Transactions on Antennas and Propagation, Vol. 50, Issue 3, March 2002, pp.411-413.
  • [a] Tan S.Y., Tan H.S., A theory for propagation path-loss characteristics in a city-street grid, IEEE Transactions on Electromagnetic Compatibility, Vol. 37, Issue 3, August 1995, pp.333-342.
  • [b] Tan S. Y., Tan H.S., Propagation Model for Microcellular Communications Applied to Path Loss Measurements in Ottawa City Streets, IEEE Transactions on Vehicular Technology, Vol. 44, No. 2, May 1995.
  • Tan S.Y., Tan H.S., A microcellular Communications propagation model based on the uniform theory of diffraction and multiple image theory, IEEE Transactions on Antennas and Propagation, Vol. 44, Issue 10, October 1996, pp.1317-1326.
  • Tao Wang, Dubey V.K., Generation of scattering functions by computer simulation for mobile communication channels, IEEE Conference on Vehicular Technology, Vol. 3, 28 April-1 May 1996, pp. 1443-1447.
  • Trautnitz F.W, EMC absorbers through the years with respect to the new site VSWR validation procedure in the frequency range from l to 18 GHz - a practical approach, IEEE International Symposium on Electromagnetic Compatibility, ISEMC 2007, 9-13 July 2007, pp. 1-6.
  • Trojanowski A., Wojciechowski J., Prognozowanie zaników w kanale radiowym Rayle-igha z wykorzystaniem metod predykcji liniowej, Krajowa Konferencja Radiokomunikacji Radiofonii i Telewizji, KKRRiT2003, Wrocław, 25-27 czerwca 2003, str. 267-270.
  • Tutschku K., Leibnitz K., Fast Ray-Tracing for Field Strength Prediction in Cellular Mobile Network Planning, IEEE 46th Vehicular Technology Conference, Vol. l, 28 April-1 May 1996,pp.541-545.
  • Valenzuela R.A., Landron O., Jacobs D.L., Estimating local mean signal strength of indoor multipath propagation, IEEE Transactions on Vehicular Technology, Vol. 46, Issue l. February 1997, pp.203-212.
  • [a]Villanese F., Evans N.E., Scanlon W.G., Pedestrian-Induced Fading for Indoor Channels at 2.45,5.7 and 62 GHz, IEEE 52nd Vehicular Technology Conference, Vol. l, 24-28 September 2000, pp. 43-48.
  • [b]Villanese F., Scanlon W.G., Evans N.E., Statistical Characteristics of Pedestrian-Induced Fading for a Narrowband 2.45 GHz Indoor Channel, IEEE 52nd Vehicular Technology Conference, Vol. 2, 24-28 September 2000, pp. 745-750.
  • Walendziuk W., Pomiar pól elektromagnetycznych wielkiej częstotliwości przy wykorzystaniu komputerowego systemu akwizycji danych, Elektronika 8/2005, str. 35-37.
  • Walfisch J., Bertoni H. L., A theoretical model of UHF propagation in urban environments, IEEE Transactions on Antennas and Propagation, Vol. 36, Issue 12, December 1988,pp. 1788-1796.
  • [a] Wesołowski K., Podstawy cyfrowych systemów telekomunikacyjnych, Wydawnictwa Komunikacji i Łączności, Warszawa, 2003.
  • [b] Wesołowski K., Systemy radiokomunikacji ruchomej, wyd. 3, Wydawnictwa Komunikacji i Łączności, Warszawa, 2003.
  • Wertz P., Landstorfer F., Wahl R., Impact of building database accuracy on predictions with wave propagation models in urban scenarios, IEEE 63rd Vehicular Technology Conference, YTC 2006-Spring, Vol. 6, 2006, pp. 2681-2685.
  • [a] Wnuk M., Predykcja natężenia pola w obszarach zurbanizowanych, Krajowa Konferencja Radiokomunikacji, Radiofonii i Telewizji KKRRiT 2004, Warszawa, 16-18 czerwca 2004, str. 153-156.
  • [b] Wnuk M., The prediction of propagation losses in urban areas, European Conference on Wireless Technology, 2004, pp.55-56.
  • Woelfle G., Wahl R., Wertz P., Wildbolz P, Landstorfer F., Deterministic Propagation Model for the Planning of Hybrid Urban and Indoor Scenarios, IEEE 16th Symposium on International Personal, Indoor and Mobile Radio Communications, PIMRC 2005, Vol. l, 11-14 September 2005, pp.659-663.
  • Wojnar A., Systemy radiokomunikacji ruchomej lądowej, Wydawnictwa Komunikacji i Łączności, 1989.
  • Xia H. H., A simplified analytical model for predicting path loss in urban and suburban environments, IEEE Transactions on Vehicular Technology, Vol. 46, Issue 4, November 1997, pp. 1040-1046.
  • Xia H.H., Bertoni H.L., Diffraction of cylindrical and plane waves by an array of absorbing half-screens, IEEE Transactions on Antennas and Propagation, Vol. 40, Issue 2, February 1992,pp.l70-177.
  • Xiongwen Zhao, Vainikainen P., Multipath propagation study combining terrain diffraction and reflection, IEEE Transactions on Antennas and Propagation, Vol. 49, Issue 8, August 2001, pp. 1204-1209.
  • Yun Liu, Jian Qian, Yubo Tian, Succinct formulas for decomposition of complex refraction angle, IEEE Antennas and Propagation Society International Symposium, 2003, Vol. 3, 22-27 June 2003, pp.487-490.
  • Yee, K. S., Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE Transactions on Antennas and Propagation, Vol. 14, 1966, pp. 302-307.
  • Zhang W., A wide-band propagation model based on UTD for cellular mobile radio Communications, IEEE Transactions on Antennas and Propagation, Vol. 45, Issue 11, November 1997, pp.1669-1678.
  • Zhang, Y.; Liang, C.H.; Wang, M.; Cui, B.; Tan, Y.Y, MP1 Based Parallel UTD with Analytical Methods to Determine Reflection Points on Cylinders and Cones, Journal of Electromagnetic Waves and Applications, Volume 19, Number 3, 2005 , pp. 355-371.
  • Zhang Y.P., Hwang Y., Kouyoumjian R.G., Ray-optical prediction of radio-wave propagation characteristics in tunnel environments. 2. Analysis and measurements, IEEE Transactions on Antennas and Propagation, Vol. 46, Issue 9, September 1998, pp.1337-1345.
  • Zhengqing Yun, Zhijun Zhang, Iskander M.F., A ray-tracing method based on the triangular grid approach and application to propagation prediction in urban environments, IEEE Transactions on Antennas and Propagation, Vol. 50, Issue 5, May 2002, pp.750-758.
  • Zhongrong Liu, Mende Woif, Modelling microcellular radio wave propagation, IEEE Vehicular Technology Conference, Vol. 2, 28 April-1 May 1996, pp. 1278-1282.
  • Normy i raporty opracowane przez organizacje normalizacyjne oraz akty prawne (związane z tematyką pracy)
  • ANSI (ang. American National Standards Institute)
  • ANSI C63.4 (1988), Amer. Nat. Standard for EMC - radiated emission measurements in EMI control - calibration of antennas.
  • Australian Communications Authority
  • Radiocommunications Electromagnetic Radiation - Human Exposure, 2003.
  • CENELEC (fr. Comité Européen de Normalisation Electrotechnique)
  • CENELEC, EN 50147-2 (1996), Komory bezodbiciowe: Przydatność alternatywnego stanowiska pomiarowego ze względu na jego tłumienność - tłumaczenie na język polski.
  • CISPR - International Special Committee on Radio Interference
  • CISPR 16-1 (1999), Radio disturbance and immunity measuring apparatus and methods.
  • CISPR/A/644/DC, Proposed amendments to CISPR 16-1-4 and CISPR 16-1-5 with regard to the introduction of the Reference Site Method as an alternative to the NSA method of validating compliance test sites, draft for comment, June 16, 2006.
  • ETSI'-European Telecommunication Standards Institute
  • ETSI/GSM Recommendation 05.05.
  • ITU - The International Telecommunication Union (dawniej CCIR -fr. Comité Consultatif International des Radiocommunications)
  • Report 239-7, Propagation statistics required for broadcasting services using the frequency range 30 to 1000 MHz, pp.: 291- 309.
  • Report 567-4, Propagation data and prediction methods for the terrestrial land mobile service using the frequency range 30 MHz to 3 GHz, pp.: 310-340.
  • ITU-R P.310 Definitions of terms relating to propagation in non-ionized media.
  • ITU-R P.311 Acquisition, presentation and analysis of data in studies of tropospheric propagation.
  • ITU-R P.341 The concept of transmission loss for radio links.
  • ITU-R P.368 Ground-wave propagation curves for frequencies between 10 kHz and 30 MHz.
  • ITU-R P. 3 69 Reference atmosphere for refraction.
  • ITU-R P.370 VHF and UHF propagation curves for the frequency range from 30 MHz to l GHz broadcasting services.
  • ITU-R P.434 ITU-R reference ionospheric characteristics and methods of basic MUF, operational MUF and ray-path prediction.
  • ITU-R P.453 The radio refractive index: its formula and refractivity data.
  • ITU-R P.525 Calculation of free-space attenuation.
  • ITU-R P.526 Propagation by diffraction.
  • ITU-R P.527 Electrical characteristics of the surface of the Earth.
  • ITU-R P.528 Propagation curves for aeronautical mobile and radionavigation services using the VHF, UHF and SHF bands.
  • ITU-R P.529 Prediction methods for the terrestrial land mobile service in the VHF and UHF bands.
  • ITU-R P.530 Propagation data and prediction methods required for the design of terrestrial line-of-sight systems.
  • ITU-R P.531 Ionospheric propagation data and prediction methods required for the design of satellite services and systems.
  • ITU-R P.676 Attenuation by atmospheric gases.
  • ITU-R P. 678 Characterization of the natural variability of propagation phenomena.
  • ITU-R P.832 World Atlas of Ground Conductivities.
  • ITU-R P.833 Attenuation in vegetation.
  • ITU-R P.834 Effects of tropospheric refraction on radiowave propagation.
  • ITU-R P.835 Reference standard atmospheres.
  • ITU-R P.837 Characteristics of precipitation for propagation modelling.
  • ITU-R P. 1057 Probability distributions relevant to radiowave propagation modelling.
  • ITU-R P. 1058 Digital topographic databases for propagation studies.
  • ITU-R P. 1060 Propagation factors affecting frequency sharing in HF terrestrial systems.
  • ITU-R P. 1144 Guide to the application of the propagation methods of Radiocommunication Study Group 3.
  • ITU-R P. 1145 Propagation data for the terrestrial land mobile service in the VHF and UHF bands.
  • ITU-R P. 1146 The prediction of field strength for land mobile and terrestrial broadcasting services in the frequency range from l to 3 GHz.
  • ITU-R P. 1238 Propagation data and prediction methods for the planning of indoor radiocommunication systems and radio local area networks in the frequency range 900 MHz to 100 GHz.
  • ITU-R P. 1240 ITU-R Methods of basic MUF, operational MUF and ray-path prediction.
  • ITU-R P. 1406 Propagation effects relating to terrestrial land mobile service in the VHF and UHF bands.
  • ITU-R P. 1407 Multipath propagation and parameterization of its characteristics.
  • ITU-R P. 1410 Propagation data and prediction methods required for the design of terrestrial broadband millimetric radio access systems operating in a frequency range of about 20-50 GHz.
  • ITU-R P. 1411 Propagation data and prediction methods for the planning of short-range outdoor radiocommunication systems and radio local area networks in the frequency range 300 MHz to 100 GHz.
  • ITU-R P. 1546 Method for point-to-area predictions for terrestrial services in the frequency range 30 MHz to 3 000 MHZ.
  • Akty prawne
  • [Dz. U. Nr 134/2005] Rozporządzenie Rady Ministrów z dnia 29 czerwca 2005 r. w ; sprawie Krajowej Tablicy Przeznaczeń Częstotliwości (Dz. U. Nr 134, póz. 1127).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD6-0002-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.