PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamic Correlation Approach to Early Stopping in Neural Forecasting of Macroeconomic Indices

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Neural networks are commonly used for modelling he behaviour of macroeconomic indices. One of the issues that arise in neural networks applications is that when a neural network is trained for too long the quality of the predictions tends to drop with the increasing number of training iterations. To overcome this problem various methods of early stopping are employed. In this paper an early stopping method based on dynamic correlation between time series introduced in our previous work is validated on macroeconomic indices. In correlation-based approach the decision whether to stop training or not is based on the prediction error value calculated for the time series that has possibly the lowest mean dynamic correlation with the time series being predicted. Experimental results show advantages of dynamic correlation method in predicting the behaviour of industrial production indices for EU-25 member countries. Experiments show that correlation-based method produces lower forecast errors compared to the early stopping performed using a subset of historical samples from the same time series. The results obtained imply that this observation is of a high statistical significance.
Słowa kluczowe
Rocznik
Strony
27--40
Opis fizyczny
Bibliogr. 7 poz.
Twórcy
autor
Bibliografia
  • [1] Bishop, Ch. M.: Neural Networks for Pattern Recognition, Oxford University Press, 1995.
  • [2] Croux, Ch., Formi, M., Reichlin, L.: A Measure of Comovement for Economic Variables: Theory and Empirics, CEPR Discussion Paper 2339, 1999.
  • [3] Gupta, M. M.: Static and Dynamic Neural Networks: From Fundamentals to Advanced Theory, Wiley-IEEE Press, 2003.
  • [4] Michalak K., Raciborski R.: Dynamic Correlation Approach to Early Stopping in Artificial Neural Network Training. Macroeconomic Forecasting Example, 5th International Conference on Intelligent Systems Design and Applications, ed. H. Kwaśnicka, M. Paprzycki, IEEE Computer Society Press, 2005.
  • [5] Munoz, P. D.: Methodology of Short-term Business Statistics Interpretation and Guidelines, Office for Official Publications of the European Communities, 2002.
  • [6] Shapiro, R. J.: 1997 Economic Census. Manufacturing Industry Series, U.S. Census Bureau, 1999.
  • [7] Euostat web page: http://europa.eu.int/comm/eurostat
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD5-0011-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.