PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Przetwarzanie i analiza informacji wizyjnej o wybranych obiektach i procesach przemysłowych z wykorzystaniem kamery wideo oraz tomografii procesowej

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
PL
Rozprawa stanowi podsumowanie prowadzonych przez autora prac dotyczących technik przetwarzania i analizy obrazów. Zagadnienia referowane w rozprawie obejmują zarówno opracowanie, jak i praktyczne zastosowanie metod analizy informacji wizyjnej z obrazów reprezentujących statyczne obiekty, jak również dynamiczne procesy technologiczne. Rozpatrywane obrazy są dostarczane przez różnego rodzaju urządzenia, takie jak kamery wideo oraz elektryczne tomografy procesowe. W rozprawie wykazano, że opracowane modele oraz metody analizy obrazów mogą być skutecznie stosowane do wyznaczania wybra- nych parametrów zarówno pojedyn- czych obiektów, jak i procesów przemysłowych. W części pracy dotyczącej analizy pojedynczych obrazów zaproponowa- no model reprezentacji obrazu nazwany szkieletem drzewa komponentów. Wykazano, że jest on niezmienny względem przesunięcia i obrotu obiektów obrazu, odporny na zakłócenia i może być skutecznie stosowany do celów kontekstowego wyszukiwania obrazów. Część pracy jest poświęcona zastosowaniom metod odkrywania struktur w obrazach z kamery wideo do monitorowania przebiegu procesów przemysłowych, między innymi oceny stopnia homogeniczności mieszaniny materiałów oraz do wykrywania defektów tekstury. W szystkie proponowane metody zastosowane w automatycznych systemach kontroli wizyjnej, mają tę zaletę, że nie zakłócają w jakikolwiek sposób samego procesu technologicznego. Ponadto rozwinięto istniejące i zaproponowano nowe metody analizy obrazów uzyskiwanych z tomografów przemysłowych. Zaproponowano metody wyznaczania prędkości przepływów mieszanin wielofazowych gaz-cząstki ciała stałego w systemie transportu pneumatycznego. Zaproponowana koncepcja kanałów wirtualnych zwiększa natomiast dokładność pomiaru przepływu masy i może być stosowana do monitorowa- nia zjawisk zachodzących wewnątrz instalacji. Koncepcja ta pozwala na wydobywanie informacji dotyczących struktur przepływu i jego dynamiki. Zaproponowano również metodę oceny procesu mieszania podczas przepływu pneumatycznego. Pokazano, że taka analiza może zostać użyta do monitorowania oraz diagnostyki istniejących systemów transportu pneumatycznego. Zaproponowane metody analizy obrazów tomograficznych mogą być pomocne w opracowaniu bardziej precyzyjnych mierników przepływów oraz umożliwiają zbudowanie wydajnych systemów transportu pneumatycznego.
EN
The present dissertation makes up the conclusion of works performed by the author, conceming image processing and analysis techniques. The problems reported in the dissertation include both the development and the practical use of the methods of the analysis of visual information from images representing static objects and dynamic technological processes. The considered images are captured by the various types of devices, such as video cameras and process tomographic systems. It is shown that proposed models and image analysis approaches can be effectively applied in the practice for extraction of chosen parameters from both single objects and industrial processes. The model of image representation named main stem of the component tree, was proposed in the work part conceming an analysis of single images. It was shown that it is invariant to shift and rotation of the image objects, resistant to the noise, and it can be effectively applied for purpose of the content-based image retrieval. The part of the work describes the applications of the structure extraction from images captured by video camera for monitoring of industrial processes particularly the evaluation of the homogeneity of the mixture of materials and texture defect detection. AlI proposed methods are applied in the automatic visual inspection systems and do not disturb the technological process in any way. Moreover, current methods were developed and the novel methods for analysis of the tomographic images captured by industrial tomographs were proposed. The methods to measure the velocity of the multiphase flows, such as solids/gas flows were proposed, whereas the proposed concept of virtual channels increases accuracy of the mass flow rate measurement. It can be applied to monitoring phenomena inside the installation. This concept enables obtaining information regarding the flow structures and its dynamics. The methodfor evaluation of the mixing process during the pneumatic flow was also proposed. It was shown that such analysis might be used for monitoring and diagnosing current systems of pneumatic conveying. The proposed methods of tomographic images analysis can be helpful in elaborating more accurate flowmeters and making possible design of the effective pneumatic conveying systems.
Rocznik
Tom
Strony
3--147
Opis fizyczny
Bibliogr. 203 poz.
Twórcy
autor
  • Politechnika Łódzka. Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki. Katedra Informatyki Stosowanej
Bibliografia
  • 1. ACHARYA T., RAY A.K., (2005), Image Processing: Principles and Applications, John Wiley & Sons Inc, 428 str.
  • 2. ACTION S.T., MUKHERJEE D.P ., (2000), Area operators for edge detection. Patt. Recog. Lett. v. 21 (8), str. 771-777.
  • 3. ALBUZ E., KOCALAR E., KHOKHAR A.A., (2001), Scalable color image indexing and retrieval using vector wavelets. IEEE Trans, on Knowledge and Data Eng., 13 (5), str. 851-861,
  • 4. AMET A.L., ERTUZUN A., ERCIL A., (1998), Texture Defect Detection Using Subband Domain Co-occurrence matrices. Proceedings of IEEE Southeast Symposium on Image Analysis and Interpretation, Turkey, str. 205-210.
  • 5. ARKO A., WATERFALL R.C., BECK M.S., DYAKOWSKI T., SUTCLIFFE P.,BYARS M. (1999), Development of Electrical Capacitance Tomography for Solids Mass Flow Measurement and Control of Pneumatic Conveying Systems. 1st World Congress on Industrial Process Tomography, Buxton, Greater Manchester, str. 140-146.
  • 6. BAJCSY R., GUPTA A., ANDERSON H., (1992), Scene Segmentation in The Framework of Active Perception. Active Perception and Robot Vision, Springer-Verlag, Berlin, str. 239-248.
  • 7. BARRERA J., DOUGHERTY E.R., BRUN M., (2000), Hybrid human-machine binary morphological operator design. An independent constraint approach. Signal Processing v. 80 (8), str. 1469-1487.
  • 8. BECK M.S., (1999a), Rozwój tomografii procesowej. Biuletyn WAT, Rok XLVIII, nr 5, str. 12-16.
  • 9. BECK M.S., (1999b), Tomografia multimodalna i korelacja wzajemna. Biuletyn WAT, Rok XLVIII, nr 5, str. 17-23.
  • 10. BECK M.S., (1999c), Zastosowania systemów tomografii procesowej. Biuletyn WAT, Rok XLVIII, nr 5, str. 24-28.
  • 11. BECK M. S., (1999d), Rekonstrukcja iteracyjna obrazu. Biuletyn WAT Rok XLVIII, nr 5, str. 29-32.
  • 12. BECK M.S., WILLIAMS R.A., (1996), Process tomography: a European innovation and its applications. Measurement science and technology -Special issue: Process Tomography, v. 7 (3), str. 215-224.
  • 13. BECK M.S., WILLIAMS R.A., (1995), Sensor Design and Selection in Frontiers of Industrial Process Tomography. New York Engineering Foundation.
  • 14. BECK M.S., WILLIAMS R.A., HOYL B.S., MORRIS M.A., WATERFALL R.C., (1995), Process Tomography'95 Implementation for Industrial Process. Manchester UMIST, str. 300-310.
  • 15. BECK M.S., (1992), Design of sensor electronics for electrical capacitance tomography. IEE Proceedings-G, v. 139 (1), str. 83-88.
  • 16. BECK M.S., PLASKOWSKI A., (1987), Cross correlation flowmeters-their design and application. Adam Hilger, Bristol.
  • 17. BENDAT J., PIERSOL A., (1976), Metody analizy i pomiaru sygnałów losowych. PAN, Warszawa.
  • 18. BERTRAND G., EVERAT J.C., COUPRIE M., (1997), Topological gray-scale watershed transformation. Vision Geometry VI, SPIE, v. 3168 (15), str. 136-146.
  • 19. BEUCHER S., (1994), Watershed, hierarchical segmentation and waterfall algorithm. Mathematical Morphology and its Applications to Image Processing, J. Serra and P. Soille, Eds. Kluwer Acad. Publ., Dordrecht, str. 69-76.
  • 20. BEUCHER S., LANTUEJOUL C.H., (1979), Use of Watershed in Contour Detection. Proc. Int. Workshop on Image Processing, Real-Time Edge and Motion Detection/Estimation, Rennes, France, str. 17- 21.
  • 21. BILGIN A., ZWEIG G., MARCELLIN M.W., (1998), Efficient Lossless Coding Of Medical Image Volumes Usingreversible Integer Wavelet Transforms. Proc. Data Compression Conference, str. 428-437.
  • 22. BOLTON G.T., HOOPER C.W., MANN R., STITT E.H., (2003), Flow distribution and velocity in a radial flow fixed bed reactor using electrical resistance tomography. 3rd World Congress on Industrial Process Tomography, Banff, Canada, str. 813-820.
  • 23. BOX G.E.P., JENKINS G.M., (1983), Analiza szeregów czasowych. Prognozowanie i sterowanie. PAN, Warszawa.
  • 24. BRACEWELL R.N., (1986), The Hartley Transform. Oxford University Press.
  • 25. BRUNELLI R., POGGIO T., (1993). Face recognition: feature versus templates. IEEE Transactions on Pattern Analysis and Machine Intelligence v. 15 (10), str. 1042-1052.
  • 26. BURDEN K., (1993), Numerical methods. PWS-KENT, Boston.
  • 27. BYARS M., PENDLETON J. D., GOODEVE D., (2003), A New High-Speed Control Interface for an Electrical Capacitance Tomography System. 3rd World Congress on Industrial Process Tomography, Banff, Canada, str. 631-636.
  • 28. CARSON C., BELONGIE S., GREENSPAN H., MALIK J., (1997), Region based image querying. In Proc of the IEEE Workshop on Content based Access of Image and Video Libraries (CVPR'97), str. 42-49.
  • 29. CHANG C.C., WANG L.L., (1997), A fast multilevel thresholding method based on lowpass and highpass filtering. Pattern Recognition Letters, v. 18 (14), str. 1469-1478.
  • 30. CHAN Y.K., CHEN C.Y., (2004), Image Retrieval System Based on Color-Complexity and Color-Spatial Features. Joumal of Systems and Software, v. 71 (1-2), str.65-70.
  • 31. CHELLAPPA R., WILSON C.L., SIROHEY S., (1995). Human and machine recognition of faces: A survey. Proceedings of the IEEE, v. 83 (5), str. 705-741.
  • 32. CHRISTOPOULOS C., (1995), The Transmission-Line Modeling Method TLM. Oxford University Press.
  • 33. CHUNG M.G., (1999), Automatic video segmentation based on spatio-temporal features. Korea Telecom Jouma1, v. 4 (1), str. 4-14.
  • 34. CIERNIAK R., (2005), Tomografia komputerowa. Budowa urządzeń CT Algorytmy rekonstrukcyjne. Akademicka Oficyna Wydawnicza EXIT, Warszawa 2005.
  • 35. CORMEN T.H., LEISERSON C.E., RIVEST R.L., (1990), Introduction to Algorithms. MIT Press.
  • 36. CORLETT A.E., (2001), Determination of Flow Patterns and Void Fraction of Multiphase Flows Using Electrical Capacitance Tomography. 2nd World Congress on Industria1 Process Tomography, Hannover, Germany, str. 636-643.
  • 37. COUPRIE M., BERTRAND G., (1997), Topological Grayscale Watershed Transformation. SPIE Vision Geometry VI Proceedings, v. 3168, str.136-146.
  • 38. DASARATHY B.V., (1991), Nearest Neighbour (NN) Norms: NN Pattern Classification Techniques. B. V. Dasarathy (Ed.), IEEE Computer Society Press, str.1-30.
  • 39. DENG X., DONG F., XU L.J., LIU X.P., XU L.A., (2001), Measurement of the Gas Phase Velocity in Gas-Liquid Flows Using a Dual-Plane ERT System. 2nd World Congress on Industrial Process Tomography, Hannover, Germany, str. 669-676.
  • 40. DOMAŃSKI M., BARTKOWIAK M., (2005), Multimedia -przełom technologiczny. Krajowa Konferencja Radiokomunikacji, Radiofonii i Telewizji KKRRiT'2005, Kraków, str. 209-215.
  • 41. DUDA R., HART P., (1973), Pattern Classification and Scene Analysis. Wiley-Interscience Publication, New York.
  • 42. DUDA R., HART P., STORK D.G., (2001) Pattern classification. Wiley-Interscience Publication, New York.
  • 43. DYAKOWSKI T., JEANMEURE L.F.C., JAWORSKI A.J., (2000), Applications of electrical tomography for gas-solids and liquid-solids flows-a review. Powder Technology, v. 11 (2), str. 174-192.
  • 44. DYAKOWSKI T., (1996), Process Tomography Applied to Multi-Phase Flow Measurement. Measurement Science and Technology, v. 7 (3), str. 343-353.
  • 45. DYAKOWSKI T., WILLIAMS R.A,(1993), Measurement of particle velocity distribution in a vertical channel. Powder Technology, v.77 (2), str. 135-142.
  • 46. ELBEHIERY H., HEFNAWY A., ELEWA M., (2004), Visual Inspection for Fired Ceramic Tile's Surface Defects using Wavelet Analysis. 1st International Computer Engineering Conference New Technologies for the Information Society, Egypt, str. 1-8.
  • 47. ETUKE E.O., BONNECAZE R.T., (1997), Angular Velocity Detection by Means of Electrical Impedance Tomography. Journal of Flow Measurement and Instrumentation, v. 5 (9), str. 134-145.
  • 48. FALOUTSOS C., (1996), Searching multimedia database by content. Kluwer Academic Pub1ishers.
  • 49. FEHMERS G., (2003), Volumetric flow rates from impedance tomography in oil/gas flown. 3rd World Congress on Industrial Process Tomography, Banff, Canada, str. 287-292.
  • 50. FLEURY M., HAYAT L., CLARK A.F., (1996), Parallel entropic autothresholding. Image and Vision Comput., v. 14 (4), str. 247-263.
  • 51. FLICKNER M., SAWHNEY H., NIBLACK W., ASHLEY J., HUANG Q., DOM B., GORKANI M., HAFNER J., LEE D., PETKOVIC D., STEELE D., YANKER P., (1995), Query by image and video content: the QBIC system. IEEE Computer, str. 23-32.
  • 52. FLORENT R., (1998), Method and device for binary segmentation of a signal representing a digital image with a threshold obtained using a histogram. Pat. US5832111, GO6K9/46.
  • 53. FROYSTEIN T., (1992), Gamma-ray flow imaging. Cand. scient. (M.Sc.) thesis in physics, Department of Physics, University of Bergen, Norway.
  • 54. FU S.K., MUI J.K., (1981), A survey on image segmentation. Pattern Recognition. v. 13 (1), str. 3-16.
  • 55. GOITEIN M., (1972), Three-dimensional density reconstruction from a series of two-dimensional projections. Nuclear Instruments and Methods, 101, str. 509-518.
  • 56. GREENSPAN H., DVIR G. AND RUBNER Y., (2004), Context-Dependent Segmentation and Matching in Image Databases. Computer Vision and Image Understanding, v. 93 (1), str. 86-109.
  • 57. GONZALEZ R.C., WINTZ P., (1987). Digital Image Processing. 2nd Ed., Addison-Wes1ey Longman Pub1ishing Co., Inc.
  • 58. GOUTSIAS J., (1992), Morphological analysis of discrete random sets. J. Math. Imaging Vision, v. 2 (2-3), str. 193-215.
  • 59. GUIMARAES S.J.F., COUPRIE M., ARAUJO A.D.A., LEITE N.J., (2001), A method for cut detection based on visual rhythm. XIV Brazi1ian Symposium on Computer Graphics and Image Processing (SmGRAPI'01), str. 297-302.
  • 60. GYENIS J., (1999), Assessment of mixing mechanisms on the basis of concentration patterns. Chemica1 Engineering and Processing, 38, str. 655-674.
  • 61. HARALICK R.M., SHAPIRO L., (1985), Survey: image segmentation techniques. Comp. Vis. Graph. Im. Proc. 29, str. 100-132.
  • 62. HAJEK M., DEZORTOV A M., MATERKA A." LERSKI R., (2006), Texture analysis for magnetic resonance imaging, Med4pub1ishing, 234 str .
  • 63. HJERTAKER B.T., (1998), Multiphase Flow Imaging by Dual Mode Tomography. PhD Thesis. University of Bergen, Norway.
  • 64. HOLDEN P.J., WANG M., MANN A.R., DICKIN F.J., EDWARDS R.B., (1999), On detecting mixing pathologies inside a stirred vessel using electrical resistance tomography. Trans IchemE, v. 77 (A8), str. 709-712.
  • 65. HOPPNER F., KLAWONN F., KRUSE R., (1999), Fuzzy Cluster Analysis. Amazon, Wi1ey.
  • 66. HORN B.R., (1986), Robot Vision. M.I.T. Press.
  • 67. HOWARD P.G., (1993), The Design and Analysis of Efficient Lossless Data Compression Systems. PhD thesis, Brown University.
  • 68. NOORALAHIYAN A.Y., BOYLE B.S., BAILY N.J., (1995), Performance of Neural Network with Noise and Parameter Variation in Electrical Capacitance Tomography. Proc. 4'ECAPT, Bergen, str. 420-424.
  • 69. HOPPNER F., KLAWONN F., KRUSE R., (1999), Fuzzy Cluster Analysis. Amazon, Wi1ey.
  • 70. HUANG S. M., (1995), Impedance Sensors Dielectric Systems, Process Tomography Principles. Techniques and Applications (ed. R.A. Wil1iams and M.S. Beck) Oxford: Butterworth - Heineman, str. 49-62.
  • 71. HUANG X.M., DYAKOWSKI T., XIE C.G., XU L.A., PLASKOWSKI A., BECK M.S., (1988), A tomographic flow imaging system based on capacitance measuring techniques. In Proc: IX Intemationa1 Conference on Pattern Recognition, Rome, Italy, str. 570-572.
  • 72. HUJAZI E.H., SOOD A.K., (1992), Residual Analysis for Range Image Segmentation and Representation of Planar Curves. Active Perception and Robot Vision, Springer-Ver1ag, Berlin, str. 239-248.
  • 73. HUNT A., PENDLETON J.D., WHITE, R.B., (2003), A Novel Tomographic Flow Analysis System. 3rd Wor1d Congress on Industrial Process Tomography, Banff, Canada, str. 281-286.
  • 74. IDRIS F., PANCHANATHAN S., (1995), Image indexing using wavelet vector quantization. Proc. SPIE Storage and retrieval of image and video databases, v. 2606, str. 269-275.
  • 75. IENTILUCCI B.J., (2003), Using the Singular Value Decomposition. http://www .cis..rit.edu/ejipci/research.htm.
  • 76. ISAKSBN O., (1996), A review of reconstruction techniques for capacitance tomography. Measurement Science and Technology, v. 7 (3), str. 325-337
  • 77. JAIN A. K., DUBBS R.C., (1988), Algorithms for Clustering Data. Prentice-Hal1 Inc., New Jersey.
  • 78. JAHNE B., (2002), Digital image processing. Springer, Berlin. Hoppner F., Klawonn F., Kruse.
  • 79. JAWORSKI A.J., DYAKOWSKI T., (2001 a), Application of Electrical Capacitance Tomography for Measurement of Gas-Solids Flow Characteristics in a Pneumatic Conveying System. Measurement Science and Technology, v. 12 (8), str. 1109-1119.
  • 80. JAWORSKI A.J., DYAKOWSKI T., (2001b), Tomographic Measurements of Solids Mass Flow in Dense Pneumatic Conveying. What Do We Need to Know About the Flow Physics? 2nd Wor1d Congress on Industria1 Process Tomography, Hannover, Germany, str. 353-361.
  • 81. JAWORSKI A.J., DYAKOWSKI T., (1998), Application of Electrical Capitance tomography for Measurement of Gas-Solid Characteristics in Pneumatic Conveying System. Department of Chemical Engineering, UMIST, str .1-10.
  • 82. JEANMEURE L.F.C., DYAKOWSKI T., ZIMMERMAN W.B.J., CLARK W., (2002), Direct flow-pattern identification using electrical capacitance tomography. Experimental Thermal and Fluid Science.
  • 83. JEZIERSKI B., ZARYCHTA D., (1994), Śledzenie poruszającego się ramienia robota przy użyciu systemu wizyjnego. Materiały II Krajowej Konferencji Naukowo-Technicznej Mechatronika. OWPW, Warszawa, str. 120-123.
  • 84. JOHANSEN G.A., FROYSTBIN T., HJERTAKER B.T., OLSBN O., (1996), A dual sensor flow imaging tomographic system. Measurement Science and Technology, v. 7 (3), str. 297-307.
  • 85. JOLLIFFE I.T., (1986), Principal Component Analysis, New York: Springer-Ver1ag.
  • 86. JONES R., (1997a). Component tree for image filtering and segmentation, In: NSIP , Michigan USA. http://www.ecn.purdue.edu/NSIP/ta11.ps.
  • 87. JONES T.N., MBTAXAS, D.N., (1997b), Automated 3dsegmentation using deformable models and fuzzy affinity. J. Duncan and G. Gindi, editors, Lecture Notes in Computer Science, v. 1230:IPMI'97, str. 113-126.
  • 88. KAK C.A., SLANEY M., (1999), Principles of Computerized Tomographic Imaging. The Institute of Electrical and Electronics Engineering, New York, str. 275-296.
  • 89. KALVIAINEN H., (1992), Motion Detection by the RH T method: Probability mechanism and extensions. Research Report No. 32, Lappeenranta University of Technology, Lappeenranta.
  • 90. KALYON D.M., BLVAN B., (2002), Electrical properties of composites as affected by the degree of mixedness. Polymer Engineering and Science, v. 42 (7), str.1609-1617.
  • 91. KAPUR J.N., SAHOO P.K., WONG A.K.C., (1985), A new method for gray-level picture thresholding using the entropy of the histogram. Comput. Vision Graphics Image Process. v. 29 (3), str. 273-285.
  • 92. KHAKHAR D.V., MCCARTHY J.J., GILCHRIST J.F., OTTINO J.M., (1999), Chaotic mixing of granular materials in two-dimensional tumbling mixers. Chaos: An Interdiscip1inary Journa1 of Non1inear Science, v. 9 (1), str. 195-205.
  • 93. KIKUKAW AT, KAWAFUCHI S., (1992), Development of an automatic summary editing system for the audio visual resources. Trans. Inst. E1ectron., Inform., Commun. Eng., v. J75-A (2), str. 204-212.
  • 94. KITTLER J., ILLINGWORTH J., (1986), Minimum error thresholding. Pattern Recognition. v. 19 (1), str. 41-47.
  • 95. KOWALSKI T., (2004), Przetwarzanie obrazów w oparciu na analizie drzewa komponentów obrazu. Praca magisterska. (Promotor V. MOSOROV), Politechnika Łódzka.
  • 96. LAM C.F., LEE M.C., (1998), Video segmentation using color difference histogram. Lecture Notes in Computer Science 1464.New York: Springer Press, str.159-174.
  • 97. LECH M., WACH, J., (2001a), Acoustic tomography in combustion. International Journa1 of Power and Energy Systems, v. 21 (1), str. 1-4.
  • 98. LECH, M., (2001b), Mass flow rate measurement in vertical pneumatic conveying of solid. Powder Techno1ogy v. 114 (1), str. 55-58.
  • 99. LEHMANN T.M, GULD M.O., THIES C., FISCHER B., SPITZER K., KEYSERS D., NEY H., KOHNEN M., SCHUBERT H., WEIN B.B., (2003) The IRMA Project: A State of the Art Report on Content-Based Image Retrieval in Medical Applications. http://lphobos.imib.rwth-aachen.de/irma/ps-pdf/Proceedings-Lehmann.pdf.
  • 100. LEMPEL A., ZIV J., (1984), Compression of Two-Dimensional Images. Combinatoria1 Algorithms on Words, A. Apostolico and z. Galil, eds., NATO ASI Series #F12, Springer-Ver1ag, Berlin, str. 141-154.
  • 101. LEVINE M.D., NAZIF A.M., (1985), Dynamic measurement of computer generated image segmentation. IEEE Trans. Pattern Ana1. Machine Intell. v. 7 (2), str. 155-164.
  • 102. LIONHEART W.R.B., (2001), Reconstruction Algorithms for Permittivity and Conductivity Imaging. 2nd World Congress on Industrial Process Tomography, Hannover, Germany, str. 4-11.
  • 103. LIU S., FU L., YANG W., WANG H., JIANG F., (2003), On-line Iterative Image Reconstruction for ECT. Proceedings of 3rd World Congress on Industrial Process Tomography, Banff, Canada.
  • 104. LOH W.W, WATERFALL R.C., CORY J., LUCAS G.P., (1999), Using ERT for Multi-Phase Flow Monitoring. 1st World Congress on Industrial Process Tomography, Buxton, Greater Manchester, str. 47-53.
  • 105. LONCARIC S., DHAWAN A.P., (1993), A morphological signature transform for shape description. Patt. Recog., v. 26 (7), str. 1029-1037.
  • 106. LONGIN J.L., ROLF L., (2002), Application of Planar Shape Comparison to Object Retrieval in Image Databases. Patt. Recog., v. 35 (1), str. 15-29.
  • 107. LU T., SUGANTHAN P.N., (2004), An Accumulation Algorithm for Video Shot Boundary Detection. Multimedia Tools and Applications, v. 22 (1), str. 89-106.
  • 108. MA W.Y., MANJUNATH B.S., (1999), NeTra: A toolbox for navigating large image databases. Multimedia Systems, v. 7, str. 184-198.
  • 109. MAAD R., JOHANSEN G.A., (2003), Automatic Weight Matrix Generation for Gamma-ray Tomography. 3rd World Congress on Industria1 Process Tomography, Banff, Canada, str. 305-309.
  • 110. MAAENPAA T., TURTINEN M., PIETIKAINEN, M., (2003), Real-Time Surface Inspection by texture. Real-Time Imaging, v. 9 (5), str. 289-296.
  • 111. MALINA W., AMBLAMEYKO S., PAWLAK W., (2002), Podstawy cyfrowego przetwarzania obrazów. Exit, Warszawa.
  • 112. MANJUNATH B.S., SALEMBIER P., SIKORA T., (2002): Introduction to MPEG-7: Multimedia Content Description Interface. Wiley & Sons.
  • 113. MARAGOS P., SCHAFER R.W., AKMAL M., (1996), Mathematical Morphology and its Applications to Image and Signal Processing. Kluwer Academic Publ., Boston, MA.
  • 114. MAZURKIEWICZ Ł., (2001), Solid Velocity Measurements by Cross Correlation Technique -Executive Summary Report, UMIST. The Chemica1 Engineering Department.
  • 115. MATERKA A. (red.), Elementy cyfrowego przetwarzania i analizy obrazów. Warszawa-Łódź, PWN, 1991.
  • 116. MEYER F., (1994), Topographic distance and watershed lines. Signal Processing v. 38 (1), str. 113-125.
  • 117. MEYER F., BEUCHER S., (1990), Morphological segmentation. J. Visua1 Commun. and Image Repres. v. 1 (1), str. 21-45.
  • 118. MILANESE R., CHERBULIEZ M., PUN T., ROTATION A., (1999), Translation. and Scale-Invariant Approach to Content-Based Image Retrieval. Journa1 of Visua1 Communication and Image Representation, v. 10 (2), str. 186-196.
  • 119. MOGA A., (1997), Parallel watershed algorithms for image segmentation. PhD thesis, Tampere University of Technology, Tampere, Fin1and.
  • 120. MORRISON D.F., (1990), Wielowymiarowa analiza statystyczna. PWN, Warszawa.
  • 121. MUERZA S., BERTHIAUX H., MASSOL-CHAUDEUR S., THOMAS G., (2002), A dynamic study of static mixing using on-line image analysis. Powder Technology, v. 128 (2-3), str. 195-204.
  • 122. MUKHOPADHYAY S., CHANDA B., (2000), A multiscale morphological approach to local contrast enhancement. Signal Processing, v. 80 (4), str. 685-696.
  • 123. NAJMAN L., COUPRIE M., (2005), Quasi-linear algorithm for the component tree. Journal of Mathematical Imaging and Vision, v. 22 (2-3), str. 231- 249.
  • 124. NISKANEN M., SILVÉN O., KAUPPINEN H., (2001), Color and texture based wood inspection with non-supervised clustering. Proc. l2th Scandinavian Conference of Image Ana1ysis, Bergen, Norway, str. 336-342.
  • 125. OECKL S., WENZEL T., MAISL M., HANKE R., (2003), Advances in Automatic Evaluation of 3D-CT Data. 3rd World Congress of Industria1 Process Tomography, Banff, Canada.
  • 126. OGLE V.E., STONEBRAKER M., (1995), Chabot: retrieval from a relational database of images. IEEE Computer, v. 28 (9), str. 40-48.
  • 127. ONG E.P., SPANN M., (1999), Robust optical flow computation based on least-medean-of-squares regression. Int. Journa1 of Computer Vision, v. 31 (1), str. 51-82.
  • 128. OSTROWSKI K.L., LUKE S.P., BENNE1T M.A., WILLIAMS R.A., (1999), Real Time Visualisation and Analysis of Dense Phase Powder Conveying. Powder Technol, 102 (1), str. 1-13.
  • 129. OTSU N., (1979). A thresholding selection method from gray-level histogram. IEEE Trans. Syst. Man Cybernet. v. 9 (1), str. 62-66.
  • 130. PAL N.R., PAL S.K., (1993), A VIEW on Image Segmentation Techniques. Pattern Recognition, v. 26 (9), str.1277-1294.
  • 131. PARTIO M., CRAMARIUC B., GABBOUJ, (2002), Rock Texture Retrieval Using Gray Level Co-occurrence Matrix. 5th Nordic Signa1 Processing Symposium, NORSIG-2002, Norway.
  • 132. PAVLIDIS T., (1987), Grafika i przetwarzanie obrazów. WNT, Warszawa.
  • 133. PITAS I., (2000), Digital image processing algorithms and applications. John Wiley Sons Inc.
  • 134. PLĄSKOWKI A., PIOTROWSKI T., (1998), Zasady działania tomografii i perspektywy przemysłowych zastosowań. Konferencja Naukowo-Techniczna - Diagnostyka Jakości Spa1ania w Energetyce, Ustroń, Polska.
  • 135. PLĄSKOWSKI A, BECK M. S., THORN R., DYAKOWSKI T., (1995a) Imaging Industrial Flows. Institute of Physics Publishing, Bristol.
  • 136. PRATT W.K., (1978), Digital image processing. Wiley, New York.
  • 137. REED T.R., BUF, J.M.H., (1993), A Review of Recent Texture Segmentation and Feature Extraction Techniques. CVGIP 57, str. 359-372.
  • 138. REINECKE N., MEWES D., (1997), Investigation of the two-phaseflow in trickle- bed reactors using capacitance tomography. Chemical Engineering Sc., v. 52 (13), str. 2111-2127.
  • 139. REINECKE N., MEWES D., (1996), Recent developments and industrial research applications of capacitance tomography. Measurement science and technology. Specia1 issue: Process Tomography, v. 7 (3), str. 233246.
  • 140. RODRIGUEZ R. N., TOBIAS R. D., (2001), Multivariate methods for process knowledge discovery: the power to know your Process. SAS Institute Inc., Cary, NC, http//www2.sas.com/proceedings/sugi26/p252-26.pdf.
  • 141. ROERDINK J.B.T.M., MEDSTER A., (2001), The watershed transform: Definitions, Algorithms and Parallelization Strategies. Fundamenta Informacae v. 41 (1-2),2001 str.187-228.
  • 142. ROSENFELD A., (1969), Picture Processing by Computer. New York: Academic Press.
  • 143. RUSS J. C., (2006), The Image Processing Handbook, CRC Pr I Llc 817 str.
  • 144. RUSYN B.P., (1997), The syntesis and hard-structural image recognition systems. Vertykal,. Lviv.
  • 145. SAHOO P.S., SOLTANI S., WONG A., (1988), A survey of thresholding techniques. Comput. Vision Graphics Image Process. v. 41 (2), str. 233-260.
  • 146. SANKOWSKI D., STRZECHA K., JEŻEWSKI S., (2000a), Image Processing in Physical Parameters Measurement. XVI IMEKO CONGRESS, str. 277-283.
  • 147. SANKOWSKI D., SENKARA J., JEŻEWSKI S., STRZECHA K., (2000b), Computerised device with CCD camera for measurement of surface tension and wetting angle in solid-liquid systems. IEEE Instrumentation and Measurement Technology Conference, Venice, Italy, str. 164-168.
  • 148. SCHWEDES J., (1968), Fliessverhalten von Schüttgütern in Bunkern. Weinheim.
  • 149. SEMETER J., KAMALABADI F., (1998), A natural pixel decomposition for tomographic imaging of the ionosphere. Proceedings of the International Conference on Acoustics, Speech and Signal Processing (ICASSP), str. 2913-2916.
  • 150. SERRA J., (1982), Image Analysis Using Mathematical Morphology. Academic Press, London.
  • 151. SHEINWALD D., LEMPEL A., ZIV l., (1990), Two-Dimensional Encoding by Finite State Encoders. IEEE Transactions on Communications COM-38, str.341-347.
  • 152. SHEPPARD M.A., SHIH L., (2005), Efficient Image Texture Analysis and Classification for Prostate Ultrasound Diagnosis, IEEE Computational Systems Bioinformatics Conference Workshops (CSBW'05).
  • 153. SHKARIN D., (2000), PPMDF-fast P PM compressor for textual data. ftp://ftp.elf.stuba.sk/pub/pc/pack/ppmd .rar.
  • 154. SHKARIN D., (1999), BMF v. 1.1-lossless image compressor. ftp://ftp.elf.stuba.sk/pub/pc/pack/brnf_1_10.zip.
  • 155. SIMONS S.I.R., NI X., TABE H.T., WEST R.M., WILLIAMS R.A., (1999), Reduction of tomographic data for use in the control of multiphase process. Chem. Eng. Comm., v. 175, str. 99-115.
  • 156. SKARBEK W., Metody reprezentacji obrazów cyfrowych. PU, Warszawa, 1993.
  • 157. SMITH I.R., CHANG S.F., (1996), VisuaISEEK: a fully automated content-based image query system. Proc. fourth ACM International Multimedia Conference, Boston, MA, USA.
  • 158. STASIAK M., (2005), Identyfikacja wnętrza obiektów trójwymiarowych metodą tomografii impedancyjnej. Rozprawa doktorska, Politechnika Łódzka, Łódź.
  • 159. STAWOWY M., RYCHLICKI M., (1996), Ocena możliwości zastosowania analizy obrazu ruchomego i statycznego dla potrzeb transportu. Politechnika Śląska, Gliwice.
  • 160. STOJANOVIC R., MITROPULOS P., KOULAMAS C., (2001), Real-time vision- sed system for textile fabric inspection. Real-Time Imaging, v. 7 (6), str. 507-518.
  • 161. SUN T.D., MUDDE R., SCHOUTEN I.C., SCARLETT B., BLEEK C.M., (1999),Image Reconstruction of an Electrical Capacitance Tomography System Using an Artificial Neural Network. 1st World Congress on Industrial Process Tomography,Buxton, Greater Manchester, str. 174-180.
  • 162. TABEH. T., SIMONS S.I.R., SAVERY J., WEST R.M.,WILLIAMS R.A., (1999), Modelling of Multiphase Processes Using Tomographic Data for Optimisation and Control. 1st World Congress on Industrial Process Tomography, Buxton, Greater Manchester, str. 84-89.
  • 163. TADEUSIEWICZ R., FLASIŃSKI M., (1991), Rozpomawanie obrazów. WNT,. Warszawa.
  • 164. TADEUSIEWICZ R., ( 1992), Systemy wizyjne robotów przemysłowych. WNT , Warszawa.
  • 165. TADEUSIEWICZ R., KOROHODA P., (1997), Komputerowa analiza obrazów. Wydawnictwo fundacji Postępu Telekomunikacji, Kraków, 1997.
  • 166. TADEUSIEWICZ R., OGIELA M.R., (2004), Automatic understanding of the images, AI-METH.
  • 167. TANG L., WU C., CHEN Z., (2002), Image dense matching based on region growth with adaptive window. Pattern Recognition Letters, v. 23 (10), str. 1169-1178.
  • 168. TERENCE A., (1990), Particle size measurement. Chapman and Hall, London.
  • 169. TIANZI J., (1999), A Tabu Search Approach to Optimal Structuring Element Extraction for MST-Based Shapes Description. International Journa1 of Computer Mathematics, v. 71 (3-4), str. 437-445.
  • 170. THEODORIDIS S., KOUTROUMBAS K., (2006), Pattern Recognition, E1sevier.
  • 171. THORN R., JOHANSEN G.A., HAMMER E.A., (1999), Three-Phase Flow Measurement in the Offshore Oil Industry-Is There a Place for Process Tomography? 1st World Congress on Industrial Process Tomography, Buxton, England, str. 228-235.
  • 172. TJUGUM S.A., JOHANSEN G.A., IVERSEN O.A., (2003), Multiphase Flow Regime Identification by Multibeam Gamma-ray Densitometry-Experimental Results. 3rd World Congress of Industria1 Process Tomography, Banff, Canada, str.236-241.
  • 173. TOMASI C., LEONIDAS J., (1994), Image Descriptions for Browsing and Retrieval. ARPA Image Understanding Workshop, Monterey, CA.
  • 174. TOMKIEWICZ K., PLĄSKOWSKI A., (1998), Metody tomografii procesowej w diagnozowaniu silników rakietowych. Konferencja Automation'98, Warszawa.
  • 175. TRENKIC V., CHRISTOPOULOS C., BENSON, T.M., (1999), Efficient computational algorithms for TLM. 1st World congress on IPT, Buxton, England, str. 324-329.
  • 176. TSAI D.M., (1995), A fast thresholding selection procedure for multimodal and unimodal histograms. Pattern Recognit. Lett., v. 6 (6), 653-666.
  • 177. TSAI W.H., (1985), Moment-preserving thresholding: A newapproach. Comput. Vision Graphics Image Process., v. 29 (3), str. 377-393.
  • 178. Varga M., (2007), Practica1 Image Processing And Computer Vision, John Wiley & Sons Inc.
  • 179. VINCENT L., SOILLE P., (1991), Watershed in Digital Spaces: An Efficient Algorithm Based on Immersion Simulation. IEEE Trans. On Pattern Analysis and Machine Intelligence, v. 13 (6), str. 583-598.
  • 180. WANG M., DORWARD A., VLAEV D., MANN R., (1999), Measurements of Gas-Liquid Mixing in a Stirred Vessel Using Electrical Resistance Tomography. 1st World Congress on Industria1 Process Tomography, Buxton, England, str. 78- 83.
  • 181. WANG S., LIU B., KULKARNI S.R., (1996), Model-based reconstruction of multiple circular and elliptical objects from a limited number of projections. IEEE Trans. Image Processing, v. 5 (1), str. 1386-1390.
  • 182. WANG J.Z., WIEDERHOLD G., FIRSCHEIN O., WIE S.X., (1997), Content-based image indexing and searching using Daubechies' wavelets. International Journa1 on Digita1 Libraries, v. 1 (4), str. 311-338.
  • 183. WATTERFALL R., HE R., BECK C.M., (1997), Visualising combustion using electrical impedance tomography. Chemical Engineering, v. 52 (13), str. 2129-2138.
  • 184. WILLIAMS R.A., BECK M.S., (1995), Process Tomography: Principles, Techniques and Applications. Butterworth-Heinemann, Oxford UK.
  • 185. WILTSCHI K., PINZ A., LINDEBERG T., (2000), An automatic assessment scheme for steel quality inspection. Machine Vision and Applications, str. 113-128.
  • 186. WU Y., LI H., WANG M., WILLIAMS R.A., (2003), A study on the characterization of air water two phase vertical flow by using electrical resistance tomography. 3rd World Congress on Industria1 Process Tomography, Banff, Canada, str.516-521.
  • 187. WU K.J., NARASIMHALU A.D., M.MEHTRE B., LAM C.P., GAO Y.J., (1995), CORE - A content-based retrieval engine for multimedia information systems. Multimedia Systems, v. 3 (1), str. 25-41.
  • 188. XU J., (1998), Efficient morphological shape representation without searching. IEEE Internationa1 Conference on Image Processing, Chicago.
  • 189. YANG W.Q., LIHUI, P., (2003), Image reconstruction algorithms for electrical capacitance tomography. Meas. Sci. & Tech., v. 14 (1), str. RI-R13.
  • 190. YANG W .Q., LIU S., (2000), Role of tomography in gas/solids flow measurement. Flow Measurement and Instrumentation, v. 11 (3), str. 237-244.
  • 191. YANG W.Q., SPINK D.M., YORK T.A., MCCANN H., (1999), An imagereconstruction algorithm based on Landweber's iteration method for electrical-capacitance tomography. Measurement Science and Technology, v. 10 (11), str. 1065-1069.
  • 192. YANG W.Q., (1996), Hardware design of electrical capacitance tomography systems. Measurement science and technology. Special issue: Process Tomography v. 7 (3), str. 225-232.
  • 193. YANG W.Q., STOTT A.L., XIE C.G., BECK M.S., (1995), Development of capacitance tomographic imaging systems for oil pipeline measurements. Rev .Sci. Instrum, v. 66(8), str 4326-4332.
  • 194. YAZICI R., KALYON M., (1997), Analysis of degree of mixing in filled polymers by wide-angle X-ray diffraction. SPE ANTEC Tech Papers, v. 43, str. 2076-2080.
  • 195. YE M., HARALICK R.M., (1999), Image Flow Estimation Using Facet Model and Covariance Propagation. Technical Report, University of Washington, Seatle.
  • 196. YE M., HARALICK R.M., (2003), Estimating Piecewise-Smooth Optical Flow with Global Matching and Graduated Optimization. IEEE transactions on pattern analysis and machine intelligence, v. 25 (12), str. 1625-1630.
  • 197. YIN P.Y., (1999), A fast scheme for optimal thresholding using genetic algorithms. Signa1 Processing, v. 72 (2), str. 85-95.
  • 198. YORK T., DUGGAN P., (1997), Processing of Tomographic Data Using Weightless Neural Networks. Journa1 of Intel1igent Systems, v. 7, str. 349-365.
  • 199. YOUNG I.T., GERBRANDS J.J., VAN VLIET L.J., (1995), Fundamentals of Image Processing. Paperback.
  • 200. ZHOU X. S., HUANG T. S., (2001), Edge-based structural features for content- based image retrieval. Patt. Recog Lett., v. 22 (5), str. 457-468.
  • 201. http://www.uspto.gov, The site of United States Patent and Trademark Office.
  • 202. Progress Report on Pattern Recognition. Reports on Progress in Physics, 1980, v. 43 (6), str. 785-831.
  • 203. Mulivariate statisctic -Cluster Ana1ysis. Biological Sciences, Manchester Metropolitan University, Manchester, UK. http://l49.170.199.144/multivar/hc.htm.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD4-0005-0047
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.