Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Photoelastic examination of strains and stresses of multi-layered composite models
Języki publikacji
Abstrakty
In the present paper the elastic and plastic defonnation in multi-layered composites of finite thickness has been analysed. Advanced mechanical and structural applications require accurate assessment of the damage state of materials during the fabrications as well as during the service. Due to the complex nature of the internl structure of the material, composites (including the layered composite) often fail in a variety of modes. The failure modes very often are influenced by the local material properties that may develop in time under heat and pressure, local defect distribution, process inducing residual stress, and other factors. Consider a laminate composite in pIane stress conditions, multi-layered beam bonded to planes having shear modulus Gi and Poisson's ratio VI respectively, subjected to bending. The behaviour of the cracks depends on the cracks configuration, size, orientation, material properties, and loading characteristic. The fracture mechanics problem will be attacked using the photoelastic visualisation of the fracture events in a model structure. The proposed analytical and experimental method will be developed for a layered composite fracture problem. Fabrication of the model of the TBC with FGM can be obtained by layered mixing of two photoelastic materials of different thenno-mechanical properties with different volume ratios gradually changed fonn layer to layer such that first layer has only a few particles of the other phase and last has maximum volume ratio of this other phase. The specimen can be built as layered beam, for example, glass layer at the bottom next particles of the same glass in the epoxy in several layers of various volume ratio of the glass in epoxy and pure epoxy at the top. The beam can be loaded in 4 point bending to generate cracks propagate through the FGM layer. Photoelastic examination of each state may be obtained for various crack configuration due to applied mechanical load (and if epoxy thermal expansion coefficient is different than the glass thermal expansion coefficient also thermal load should be applied). The development of the failure criterion for a particular application is also very important for the predictions of the crack path and critical loads. Recently, there has been a successful attempt to formulate problems of multiple cracks without any limitation. This attempt was concluded with the series of papers summarising the undertaken research for isotropic and non-homogeneous class of problems. In the present paper the elastic and plastic defonnation has been analysed using the Muskhelishvili' s complex potentials method. The elastostatic stress field is required to satisfy the well-known equilibrium equations using two analytic functions ψ(z) and χ(z). The distribution of stresses and displacements has been calculated using the finite element method (FEM). Finite element calculations were perfonned in order to verify the experimentally observed the isochromatic distribution during cracks propagation. The geometry and materials of models were chosen to correspond to the actual specimens used in the experiments. The numerical calculations were carried out using the finite element program ANSYS 6.1, 9, by applying the substructure technique. Two different methods were used: solid modeling and direct generation. For comparison the numerical and experimental isochromatic fringes distribution was shown in this paper. It is possible to fabricate a model using various photoelastic materials to model multi layered structure. Photoelasticity has shown to be promising in stress analysis of bearns with various number and orientation of cracks. Finite element calculations (FEM) were performed in order to verify the experimentally observed branching phenomenon and the isochromatic distribution observed during cracks propagation. The agreement between the finite element method predicted isochromatics-fringe pattems distribution and those determined photoelasticaly was found to be within 3ফ percent. Crack propagation in multi-layered composites of finite thickness is especially challenging and open field for investigation. The development of the failure criterion for a particular application is also very important for the predictions of the crack path and critical loads. Recently, there has been a successful attempt to formulate problems of multiple cracks without any limitation. This attempt was concluded with the series of papers surnmarising the undertaken research for isotropic and non-homogeneous class of problems. Crack propagation in multi-layered composites of finite thickness is especially challenging and open field for investigation.
Rocznik
Tom
Strony
3--156
Opis fizyczny
Bibliogr. 176 poz.
Twórcy
autor
- Politechnika Łódzka. Katedra Wytrzymałości Materiałów i Konstrukcji
Bibliografia
- [1] Amazigo J.C.: Fully plastic crack in an infinite body under anti-plane shear, Int. J. Solids Structures, Vol. 10, 1003-1015, 1974.
- [2] Arin K. and Erdogan F.: Penny-shaped crack in an elastic layer bonded to dissimilar half spaces. Int. J. Enging Sci., Vol. 9, 1971. pp. 213-232.
- [3] ASTM E – 399 - 83 Standart Test Method for Plane-Strain Fracture Toughness of Metalic Materials.
- [4] ASTM E – 813 - 81 Standart Test Method for JIC, a Measure of Fracture Toughness.
- [5] Bosco C., Carpinteri A. and Debernardi P.G.: Fracture of reinforced concrete: scale effect and snap-back instability. Engineering Fracture Mechanics, Vol. 35, No 4/5, 1990, p. 665-677.
- [6] Bednarski T: Mechanika plastycznego płynięcia, PWN, Warszawa 1995.
- [7] Binienda, W .K., Arnold S.M., Tan Q. T. and Xu M.H.: Stress Intensity Factors in a Fully Interacting, Multicracked, Isotropic Plate. Computional Mechanics, Vol. 13, 1993.
- [8] Bovie O.L. and Freese C.E.: Cracked-rectangular sheet with linearly varying end displcements, Eng. Fract. Mech. –Vol 14 (519-526) 1981.
- [9] Bogdański S., Olzak M., Stupnicki J.: Numerical Modelig of a 3D rail RCF "squat"-type crack under operating load, Fatigue & Fracture of Engineering & Structures, 923-935, 1998.
- [10] Bridgman P.W.: Studies in large plastic flow and fracture. Mc Graw-Hill, New York, 1952.
- [11] Brussat T.R., Westmann R.A.: A Westergagrd-type stress function for lin inclusion problems, Int. J. Solid Structures, Vol. 11, 665-677, 1975.
- [12] Chen L., Batra I.: Analysis of material instability at an impact loaded crack tip. Theoretical and Applied Fracture Mechanics 29, pp. 213-217, 1998.
- [13] Cherepanov G.P.: Mechanics of brittle fracture. Mc Graw-Hill, New York, 1979.
- [14] Chan W.V., Chow C.L.: Notch effects on photoelastic determination of mixed-mode stress intensity factors, Eng. Fract. Mech.-Vo1 12, 253-265, 1979.
- [15] Chyanbin Hwu, Wu J.Y., Fan C.F. and Hsieh M.C.: Stroh Finite Element for Two-Dimensional Linear Anisotropic Elastic Solids, Trans. ASME, Journal of Appl. Mechanics. Vol. 68, 3, p. 468-475, 2001.
- [16] Civelek M.B. and Erdogan F.: Cracks problems for a rectangular plate and an infinite strip, Int. Journ. of Fracture (19), pp. 139-159, 1982.
- [17] Cook T.S. and Erdogan F.: Stresses in bonded materials with a crack perpendicular to the interface, Int. Journ of Engineering Science, Vol. 10, 677-697, 1972.
- [18] Chisholm D.B. and Jones D.L.: An Anlalytical and Experimental Stress Analysis of a Practical Mode II Fracture Test Specimen. Experimental Mechanics 1, 1977.
- [19] Delale F., Erdogan F.: On the mechanical modeling of the interfacial region in bonded half-planes, Journ. of Appl. Mech. Trans. of the ASME, Vol. 55, 317-324, 1988.
- [20] Dietrich L., Miastkowski J., Szczepiński W .: Własności plastyczne metali, X tom MT: Metody doświadczalne mechaniki ciała stałego, PWN, Warszawa 1984.
- [21] Doroszkiewicz R.S.: Elastooptyka, PWN, Warszawa -Poznań, 1975.
- [22] Dyląg Z., Jakubowicz A., Orłoś Z.: Wytrzymałość Materiałów, Warszawa WNT 1996.
- [23] Eftis J., Subramonian N. and Liebowitz H.: Biaxiallocal defects on the crack border elastic strain energy and strain energy rate, Eng. Fract. Mech.-Vo1 9, 753-764, 1977.
- [24] Etheridge J.M., Dally J.W., Kobayashi T.: A new method of determinig the stress intensity factor K from isochromatic fringe loops, Eng. Fract. Mech.-Vo1 10, 81-91, 1978.
- [25] Erdogan F: Stress Intensity Factors, Transactions of the ASME, Vol. 50, 992-1002, 1983.
- [26] Farahmand B. and Bockradth G.E.: A theoretical approach for evaluating the plane strain fracture toughness of ductile metals. Eng. Fract. Mech., Vol. 53, 975-990, 1996.
- [27] Fung Y .C.: Podstawy mechaniki ciała stałego, PWN, 1969.
- [28] Frocht M.M.: Photoelasticity, John Wiley, New York, 1960.
- [29] Gasiak G., Lachowicz T., Rozumek D.: Badanie wpływu parametrów geometrycznych próbki na prędkość Pękania przy wahadłowym zginaniu, Mat. XVII Symp. Zmęczenia i Mechaniki Pękania Materiałów i Konstrukcji, Wyd. ATR, Bydgoszcz, 2000.
- [30] Goldman N.L., Hutchison J. W.: Fully Plastic Crack problems: the center-cracked strip under plane srtain, Int.J. Solid Structures, Vol. 11, 575-591, 1975.
- [31] Gołaski L.: Metody doświadczalne mechaniki pękania, Wydawnictwo Politechniki Świętokrzyskiej, 1992.
- [32] Gołoś K., Enyn F.: Generalization of Cumulative Damage Criterion to Multilevel Cyclic Loading, Theoretical and Applied Fractutre Mechanics, 169-176, 1988.
- [33] Gołoś K., Cała T.: Komputerowo wspomagana analiza spektrum obciążenia, Zeszyty Naukowe Politechniki Koszalińskiej, 93-100, 1997.
- [34] Gross B. and Srawley J.E.: "Stress-Intensity Factors for Single Edge Noth Specimen in Bending or Combined Bendinng and Tension by Boundary Collocation of a Stress Function." NASA Technical Note D-2603, 1965.
- [35] Gupta A.G.A.: Layered composite with a broken laminate, International Journal of Solids and Structures, No 36 (1845-1864), 1973.
- [36] Hutchinson J. W.: Singular behaviour at the end of a tensile crack in a hardening material, J. Mech. Phys. Solids. Vol. 16, 13-31, 1968.
- [37] Hutchinson J. W.: Plastic stress and strain fields at a crack tip, J. Mech. Phys. Solids. Vol. 16, 337-347, 1968.
- [38] Hilton P.D. and Sin G.C.: A laminate composite with a crack normal to interfaces, International Journal of Solid and Structures, No 7, 913, 1971.
- [39] Hoyniak D., Conway J.C.: Finite element analysis of the compact shear specimen, Eng. Fract. Mech. 12, 301-306, 1979.
- [40] Ioakimidis N.I. and Theocaris P.S.: A simple method for the photoelastic determination of mode I stress intensity factors. Eng. Fract. Mech., Vol. 10, 463-468, 1979.
- [41] Ioakimidis N.I. and Theocaris P.S.: On the photoelastic determination of complex stress intensity factors. Eng. Fract. Mech., Vol. 12, 677-684, 1978.
- [42] Iosipescu N.: New accurate procedure for single shear testing of metals. J. Mater. 2 (3), 537-566, 1967.
- [43] Irwin G.R., Dally J.W., Kobayashi T., Fourney W.L., Etheridge M.J. and Rossmanith H.P.: On the Determination of the a-K relationship for Birefringent Polymers. Experimental Mechanics 19 (4), 1979.
- [44] Jakubowicz A., Orłoś Z.: Wytrzymałość Materiałów, WNT Warszawa 1984.
- [45] Jaroniek M.: Propagation of cracks in models a reinforced concrete beam. Elsevier Science Publishers LTD, London, New York 1991.
- [46] Jaroniek M.: Failure and cracking mechanisms of the reinforced be am subjected to bending. Zeszyty Naukowe Politechniki Łódzkiej. Mechanika, z. 84, nr 7229, 1995.
- [47] Jaroniek M.: Study of fracture toughness and fracture energy in composites. Journal of Theoretical and Applied Mechanics, Vol. 32 No. 1, Warsaw 1994.
- [48] Jaroniek M.: Experimental Stress Analysis In The Cracked Stage of The Reinforced Beams, Mat. Symp. EFC 11- ENSMA Futuroscope - Poitiers (Francja) 3-6. 09. 1996.
- [49] Jaroniek M.: Propagacja rys w przypadku materiałów sprężysto-plastycznych i kruchych. Zeszyty Naukowe Politechniki Świętokrzyskiej, Kielce, Mechanika, 1997.
- [50] Jaroniek M.: Cracking Mechanisms of The Brittle And Elastic-Plastic Matrix Composites - Mat. ECCE /5 Fifth International Conference On Composite Engineering Las Vegas USA 5-11. 07. 1998.
- [51] Jaroniek M.: Proces pękania kompozytów polimerowych faza szklista i stan sprężysto-plastyczny, Zesz. Naukowe Politechniki Świętokrzyskiej, Mechanika, z. 68, Kielce 1999.
- [52] Jaroniek M.: Analiza eksperymentalna kompozytu z materiału funkcyjnie zmiennego (fgm), Zesz. Naukowe Politechniki Świętokrzyskiej, Mechanika, z. 68, Kielce 1999.
- [53] Jaroniek M.: Mixed-Mode Fracture And Failure Mechanism Analysis In Composites, Mat. Seventh International Conference on Composites Engineering ICCE/7, USA Denver Colorado, July 2-8, 2000.
- [54] Jaroniek M.: Mechanizm zniszczenia kompozytów z materiałów funkcyjnie zmiennych (FGM), Mat. XIX Symp. Mechaniki Eksperymentalnej Ciała Stałego, Warszawa 2000.
- [55] Jaroniek M.: Modele elastooptyczne kompozytów z materiałów wielofazowych, Zesz. Nauk. Politechniki Białostockiej, Mechanika, z. 24, Białystok, 2001
- [56] Jayadevan K.R., Narasimhan R., Ramammurthy T.S., Dattaguru B.: Effect of T-stress and loading rate on crack initiation in rate sensitive plastic materials. Int. J. Solid Structures. 2002, Vol. 39. pp. 1757-1775.
- [57] Kaya A.C., Erdogan F.: Stress intensity factors and COD in an orthotropic strip. Int. Journ. of Fracture Vol. 16, No 2, 1980.
- [58] Kapkowski J., Słowikowska I., Stupnicki J.: Badanie naprężeń metodą elastooptycznej warstwy powierzchniowej. PWN, Warszawa 1987.
- [59] Kim A.S., Besson J. Pineau: Global and local approaches to fracture normal to interfaces. International Journal of Solids and Structures, No 36 (1845-1864), 1999.
- [60] Kim Y., Zhu X.K., Chao Y.J.: Quantification of constraint on elastic-plastic 3D crack front by J-A2 three-term solution. Eng. Fract. Mech. Vol. 68, 895-914, 2001.
- [61] Klemm P., Jaroniek M.: Badania odkształceń i naprężeń podczas przemian fazowych woda-lód w kapilarach kompozytów cementowych. Fizyka materiałów i konstrukcji budowlanych t. 2 (Modele fizyczne i metody badań). Praca zbiorowa pod red. P. Klemma, Łódź 1994.
- [62] Kocańda D.: Analiza rozwoju krótkich pęknięć zmęczeniowych Wojskowa Akademia Techniczna 1996.
- [63] Kocańda D., Kocańda S.: Behaviour of fatigue short cracks in a medium carbon steel subjected to reversed torsion, Mechanika Teoretyczna i Stosowana, Vol. 34, No 2, 327-343, 1996.
- [64] Kocańda S.: Zmęczeniowe niszczenie metali. Wyd. 2, WNT , Warszawa 1996.
- [65] Kocańda S., Szala J.: Podstawy obliczeń zmęczeniowych, PWN, Warszawa, 1997.
- [66] Kopecki H.: Problemy analizy stanów naprężenia ustrojów nośnych w świetle badań eksperymentalnych metodami mechaniki modelowej, Ofic. Wyd. Politechniki Rzeszowskiej, Zesz. Nauk., nr 26, 1991.
- [67] Kleiber M., Woźniak Cz.: Nonlinear Mechanics of Structures, PWN, Warszawa, 1991.
- [68] Kubiak T., Niezgodziński T.: Wyznaczanie kierunku propagacji pęknięć metodą elementów skończonych, Mat. XVII Symp. Zmęczenia i Mechaniki Pękania Materiałów i Konstrukcji, Wyd. ATR, Bydgoszcz, 2000.
- [69] Krzyś W., Życzkowski M.: Sprężystość i plastyczność, PWN, Warszawa, 1962.
- [70] Kumar A.N. and Bhattacharya S.: Rotational factor using bending moment approach under elasto-plastic situation-II. Crack 3PB geometry. Eng. Fract. Mech. Vol. 50, 507-517, 1995.
- [71] Lemaitre J.: Local approach to fracture, Eng. Fract. Mech. 25, 523-537, 1986.
- [72] Liebowitz H. (ed.): Fracture. An Advanced Treatise, Vol. 1-7, Academic Press, New York, 1968-1972.
- [73] Liebowitz H., Lee J.D., Eftis J.: Biaxiallocal effects in fracture mechanics, Eng. Fract. Mech. -Vol. 10, 315-335, 1978.
- [74] Malinin N.N., Rżysko J.: Mechanika materiałów, PWN, Warszawa 1981.
- [75] Martinelli A., Venzi S.: Dependence of IIC , tearing modulus, CTOA, and total fracture energy on specimen dimension. Eng. Fract. Mech. Vol. 68, 1575-1590, 2001.
- [76] Mishuris G.S., Olesiak Z.S.: On boundary problem in fracture of elastic composites, Euro. Jnl. Applied Mathematics, No 6, 591-610, 1995.
- [77] Miszuris G.S., Olesiak Z.S.: Międzywarstwowa szczelina przy nieidealnym połączeniu materiałów w przypadku ścinania, Zeszyty Naukowe Politechniki Świętokrzyskiej, Mechanika 68, Kielce 1999.
- [78] Mróz Z.: On generalized kinematic hardening rule with memory of maximal prestress, J. Mec. Appl. 5, 241-259, 1981.
- [79] Mróz Z.: Mathematical Models of Material Behaviour, University of Waterloo, Waterloo, 1972
- [80] Mróz Z., Seweryn A.: Darnage description with related crack initiation and propagation conditions, J. Physique, 6 (C6), 529-538, 1996.
- [81] Mróz Z., Seweryn A., Dylatacyjny model szczeliny, Zesz. Nauk. Pol. Białostockiej, Mech., 16, 127-142, 1996.
- [82] Muscheliszwili N.I.: Some basic problems of the matematical theory of elasticity, Nordhoff 1953.
- [83] Nakamura T. and Waog Z.: Simulations of Crack Propagation in Porous Materiałs, Trans. ASME, Journal of Appl. Mechanics, Vol. 68, 2, p. 242-251, 2001.
- [84] Nowacki W.: Mechanika budowli t. III, PWN. Warszawa, 1968.
- [85] Nowacki W.: Teoria sprężystości, PWN Warszawa, 1970.
- [86] Neimitz A.: Dynamika wzrostu pęknięć, w Serii Monografie, Rozprawy, Wydawnictwo Politechniki Świętokrzyskiej, 1994.
- [87] Neimitz A.: Mechanika Pękania. PWN, Warszawa, 1998.
- [88] Neimitz A., Dzioba I., Molasy R., Lis. Z.: An experimental analysis of the stable crack growth, Arch. Bud. Masz., 43, 213-226, Warszawa, 1996.
- [89] Neimitz A.: Analysis of the crack motion with warying velocity according to Dugdale-Panasyuk model, Eng. Fract. Mech. Vol. 39, 329-338, 1991.
- [90] Neimitz A.: Crack growth equations W: Constitutive Relation in High/very High Strain Rares, , Springer, 92-104, 1996.
- [91] Neimitz A.: Uogólnienie modelu Dugdale'a uwzględniające trójosiowość stanu naprężeń przed frontem szczeliny, Mat. XVII Symp. Zmęczenia i Mechaniki Pękania Materiałów i Konstrukcji, Wyd. ATR, Bydgoszcz, 2000.
- [92] Neuber H.: Theory of Stress Concentration for Shear-Strained Prismatical Bodies With Arbitrary Nonlinear Stress-Strain Law, Trans. ASME, Journal of Appl. Mechanics 28, p. 544-550, 1961.
- [93] Niezgodziński M., Niezgodziński T.: Wzory, wykresy i tablice wytrzymałościowe, WNT 1996.
- [94] Niezgodziński T.: Propagacja szczeliny przy obciążeniach ścinających, Mat. XVI Symp. Zmęczenia i Mechaniki Pękania Materiałów i Konstrukcji, Wyd. ATR, Bydgoszcz 1998.
- [95] Niezgodziński T.: Die Aufgaben bei Vorhandersein von Schub, VII Symposium "Verformung und Bruch", Magdeburg 1998
- [96] O'Dowd N.P ., Kolednik O., Naumenko V .P .: Elastic-plastic anałysis of biaxially loaded center-cracked plates. Int. J. Solid Structures. 1999, Vol. 36. pp. 5639-5661.
- [97] Okamura H., Wataoabe K. and Takaoo T.: Deformation and Strength of Cracked Member Under Bending Moment and Axial Force, Eng. Fract. Mech. 7, 531-539, 1975.
- [98] Olzak M., Stupnicki J.: Zmienność współczynników intensywności naprężenia w trakcie przetaczania obciążenia po bieżni ze szczeliną, Mat. VII Konf. Mechaniki Pękania, Kielce-Cedzyna 109-123, 1999.
- [99] Olzak M., Stupnicki J.: Amplitudy WIN w trakcie przetaczania obciążenia po bieżni ze szczeliną, Mat. XVII Symp. Zmęczenia i Mechaniki Pękania Materiałów i Konstrukcji, Wyd. ATR, Bydgoszcz 2000.
- [100] Olesiak Z.S., Pyryev Yu.A.: Transient response in a one-dimensional model of thermoelastic contact, Trans. ASME, Journal of Appl. Mechanics. 63, p. 575-581, 1996.
- [101] Olesiak Z.S.: Paradoksy w pewnych rozwiązaniach klasycznych kontaktowych zagadnień termosprężysości, Mat. XIX Sympozjum Mechaniki Eksperymentalnej Ciała Stałego, str. 49-60, Warszawa-Jachranka 2000.
- [102] Olzak M., Stupnicki J.: The influence of crack faces interaction model on the results of numerical study of stress intensity factors for the surface breaking crack in race way, lot. Conf. on Contact Mechanics 99', Stuttgart 1999.
- [103] Orłoś Z.: Pomiary naprężeń w budowie maszyn. PWT, Warszawa 1956.
- [104] Orłoś Z., Matczak MJ., Kraska Z.: Analiza odkształceń i przemieszczeń metodą interferometrii holograficznej. Przegląd Mechaniczny, 16, Warszawa 1973.
- [105] Orłoś Z., Galio G.: Investigation of thermal stress in the I beams with circular holes in the web. Mech. Teoret. I Stos. 2, 1992.
- [106] Praca zbiorowa pod redakcją Z. Orłosia, Doświadczalna analiza odkształceń i naprężeń. PWN, Warszawa 1977.
- [107] Panasjuk V.V .: O rasprostranienji proiizwlono irientirowannoj priamoliniejnoj trieszcziny pri rastiżenji płastiny, Prikładnaja Mechanika, Tom 2, Vol. 2, 1965.
- [108] Panasyuk V.V., Savruk M.P., Datsyshyn A.P.: A general method of solution of twodimensional problems in the theory of cracks, Eng. Fract. Mech. Vol. 9, 481-497 , 1977.
- [109] Panasiuk V.V. (red.): Mechanika razruszenia i procznast materialow, Nauk. Dumka, Kijów. 1988-1990.
- [110] Panasiuk V.V.: Mechanika kwazichrupkogo razruszenia materialow, Nauk. Dumka, Kijów. 1991.
- [111] Picon R., Paris F., Canas J., Marin J.: A complete field method for the photoelastic determination of K I and K II in generał mixed-mode fracture. Ęng. Fract. Mech. Vol. 51, 505-516, 1995.
- [112] Pindera J.T.: Współczesne metody elastooptyki, PWT, Warszawa 1960.
- [113] Pindera J.T.: Reologiczne własności materiałów modelowych, WNT, Warszawa 1962.
- [114] Polska Norma Metoda badania odporności na Pękanie w płaskim stanie odkształcenia, PN-87/H-04335.
- [115] Polska Norma: Metoda badania odporności na Pękanie przez wyznaczenie krytycznej wartości całki J, J IC, PN-88/H-043368.
- [116] Ramesh K., Yadav A.K. and Pankhawala V .A.: Classification of crack tip isochromatics in orthotropic composites. Eng. Fract. Mech. No 1, 1-16, 1996.
- [117] Rathod H. T.: A study of asymmetrycally loaded Griffith crack in an infinite anisotropic medium, Eng. Fract. Mech. Vol. 11, 87-97, 1979.
- [118] Rice J.R.: A Path Independent Integral and the Approximate Analysis of Strain Concentration by Nothes and Cracks. Journal of Applied Mechanics, p. 379,1968.
- [119] Rice J.R., Rosengren G.F.: Plane Strain Deformation Near a Crack Tip in a Power-Law Hardening Material. Jurn. Mech. Phys. Solids, 1968, Vol. 16.
- [120] Rykaluk K.: Pęknięcia w konstrukcjach stalowych, Dolnośląskie Wydawnictwo Edukacyjne, Wrocław, 2000.
- [121] Sahn S., Goldner H.: Bruch -und Beurteilungkriterien in der Festigkeitslehere, VEB Fachbuchverlag Leipzig 1989.
- [122] Sanford R.J. and Dally J. W .A.: Generał Method For Determining Mix ed-Mode Stress Intensity Factors From Isochromatic Fringe Patterns. Eng. Fract. Mech. Vol. 2, 621-633, 1979.
- [123] Schindler H.J., Sayir M.: Path of crack in a be am due to dynamic flexural fracture. Int. J. of Fract. 25, 95-107, 1984.
- [124] Seweryn A.: Britle fracture criterion for structures with sharp nothes, Eng. Fract. Mech. Vol. 47, 673-681, 1984.
- [125] Seweryn A., Mróz Z.: A non-local stress failure condition for structral elements under multiaxial loading, Eng. Fract. Mech., Vol. 51, 955-973, 1995a.
- [126] Seweryn A., Mróz Z.: A non-local stres s failure and fatigue damage acumulation condition, In Multiaxial Fatigue and Design, Mech. Eng. Publ. 259-280, 1996a.
- [127] Seweryn A.: Kumulacja uszkodzeń i Pękanie elementów konstrukcyjnych w złożonych stanach obciążeń, Wyd. Pol. Białostockiej 1997.
- [128] Seweryn A.: Metody numeryczne w mechanice pękania. Polska Akademia Nauk, Biblioteka mechaniki stosowanej, IPPT, PAN, Warszawa 2003.
- [129] Sih G.C.: Hanbook of Stress-Intensity Factors, Bethlehem, Leigh University Press, Vol. 1, 1973.
- [130] Sih G.C.: Strain-energy-density factor applied to mixed mode crack problems, Int. J. of Fract., 10, 305-321, 1974.
- [131] Siemieniec A.: Elastooptyka, Skrypty Uczelniane Skrypt, nr 504 AGH, Kraków 1975.
- [132] Shih C.F., Hutchinson J.W.: Fully Plastic Solutions and Large Scale Yielding Estimates for Plane Stress Crack Problems. Journ. of Engineering Materials and Technology. No. 76, 1976.
- [133] Sokołowski W.W .: Teoria plastyczności, PNW, Warszawa 1957.
- [134] Sneddon I. N.: Metoda transformacji całkowych w mieszanych zagadnieniach brzegowych klasycznej teorii sprężystości, Wyd. PAN. Wrocław-Warszawa, Ossolineum 1974.
- [135] Stallybras M.P.: A semi-infinite crack perpendicular to the surface of an elastic half plane. Int. J. Engng Sci. Vol. 9, 133-150, 1971.
- [136] Stanisławski S.: Podstawy teorii plastyczności, Wydawnictwa Politechniki Poznańskiej, Poznań 1977.
- [137] Strawley J.E. and Gross B.: Stress-Intensity Factors for bent and compact specimens. Eng. Fract. Mech.-4 (587-589) 1972.
- [138] Stupnicki J.: Trend s of experimental mechanics, Journ. of Theoterical and Applied Mechanics, Vol. 2, No 34, 207-233, 1965.
- [139] Stupnicki J.: Optyczne metody badań w mechanice, t. X, PNW, Warszawa, 1984.
- [140] Stupnicki J., Olzak M., Wójcik R.: Numerical analysis of surface crack propagtion in rail-wheel contact zone, Rail Quality and Maintenance for Modern Railway operation, Kluwer Academic, The Netherlands. pp. 385-395, 1991.
- [141] Stupnicki J.: Nowe obszary zastosowań i nowe metody eksperymentalne w dziedzinie mechaniki ciała stałego, Mat. XXXVII Sympozjum "Modelowanie w Mechanice" 279-283, 1999.
- [142] Stupnicki J., Szpakowska M.: Normalne i styczne przemieszczenia brzegów Pęknięcia pod wpływem złożonych obciążeń, Mat. XVII Symp. Zmęczenie Materiałów i konstrukcji, Wyd. ATR, Bydgoszcz, 2000.
- [143] Szala J.: Hipotezy sumowania uszkodzeń zmęczeniowych -wybrane zagadnienia, BTN, seria Mechanika, 15, PWN, Warszawa- Poznań 1985.
- [144] Szala J.: Obciążenia i trwałość zmęczeniowa elementów maszyn, Wyd. Akademii Techniczno Rolniczej, Bydgoszcz 1989.
- [145] Szala J.: Hipotezy sumowania uszkodzeń zmęczeniowych, Wyd. Akademii Techniczno Rolniczej, Bydgoszcz 1998.
- [146] Szala J.: Uwagi o zastosowaniach fenomenologicznych hipotez sumowania uszkodzeń zmęczeniowych, Mat. XVII Symp. Zmęczenia i Mechaniki Pękania Materiałów i Konstrukcji, Wyd. ATR, Bydgoszcz 2000.
- [147] Szczepiński W.: A photoelastic method for determining stresses by means isochromes only. Arch. of Applied Mechanics. 5 (13) Warsaw, 1961.
- [148] Szczepiński W.: Metody doświadczalne mechaniki ciała stałego. PWN, Warszawa 1985.
- [149] Szmelter J.: The Finite Element Method Progarams, Arkady, Warsaw, 1979.
- [150] Shbeeb N.I., Binienda, W.K. and Kreider K.L.: Anałysis of Multiple Cracks in a Infinite Functionally Graded Plate, NASA CR 208676, 1998.
- [151] Tada H., Paris P., Irwin G.R.: The stress analysis of cracks: Handbook. - Hellertown: Del Research Corp., p. 385 1973.
- [152] Tvergaard V. and Hutchinson J.W.: Effect of Strain-dependent cohesive zone model on prediction of crack growth resistance. Int. J. Solid Structures. 1996, Vol. 33. pp. 3297-3308.
- [153] Tetelman A.S., Wilshaw T.R. and Rau C.A.: The critical tensile stres criterion for cleavage. Int. Journ. of Fracture Mechanics, Vol 4, No 2, 1968.
- [154] Theocaris P.S. and Gdoutos E.E.: A photoelastic determination of K I stress intensity factors. Eng. Fract. Mech. Vol. 7, 331-339, 1975.
- [155] Timoschenko S.: Teoria Sprężystości, Arkady, Warszawa 1962.
- [156] Rice J.R.: A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks. Journal of Applied Mechanics, p. 379, 1968.
- [157] User's Guide ANSYS 5.4, Ansys, Inc., Huston, USA.
- [158] Viola E., Piva A.: Second-order approximation to the crack trajectory equation, Eng. Fract. Mech. Vol. 2, 121-126, 1986.
- [159] Wang X.: Elastic T-stress solutions for penny-shaped cracks under tension and bending. Eng. Fract. Mech. Vol. 71, 2283-2298, 2004.
- [160] Wasiluk B., Gołoś K.: Analiza stref plastycznych przed czołem Pęknięcia w złożonym stanie obciążenia, Mat. VII Konf. Mechaniki Pękania, Kielce-Cedzyna 109-123, 1999.
- [161] Wegner T.: Metody energetyczne w wytrzymałości materiałów, Hipoteza wytrzymałościowa stateczności równowagi wewnętrznej. Wydawnictwo Politechniki Poznańskiej, 81 stron, Poznań 1999.
- [162] Wegner T.: Surface of limit state in nonlinear material and its relation with plasticity condition. The Archive of Mechanical Engineering, Vol. XLVII, Number 3, 2000, p. 205-223.
- [163] Wegner T.: A method of material modelling with the use of strength hypothesis of inner equilibrium stability. Mechanics and Mechanical Engineering, Vol. 4, No. 2, 2000, p. 139-147.
- [164] Wessel E.T.: State of the art of the WOL specimen for fracture toughness testing. Eng. Fract. Mech. 12, 99-101, 1979.
- [165] Westergard H.M.: Bearing pressures and cracks, ASME, Trans: J. Appl. Mech. 61, A49, 1939.
- [166] Werner K.: Analiza rozwoju półeliptycznych pęknięć zmęczeniowych, Wyd. Politechniki Częstochowskiej, Seria: Monografie, nr 70, 2000.
- [167] Wnuk M.P.: Podstawy Mechaniki Pękania, AGH, Kraków 1977.
- [168] Williams J.F. and Stouffer D.C.: An estimate of the residual stress distibution in the vicinity of a propagting fatigue crack, Eng. Fract. Mech. Vol. 11, 547-557 , 1979.
- [169] Williams J.G.: Fracture Mechanics of Polymers, Ellis Horwood Limited John Wiley & Sons, New York-Chichester 1984.
- [170] Williams M.L.: On the Stress Distribution at the Base of a Stationary Crack. Trans. ASME, Joumal of Appl. Mechanics. 3, p. 109-114, 1957.
- [171] Williams M.L.: The Bending Stress Distribution at the Base of a Stationary Crack. Trans. ASME, Journal of Appl. Mechanics. 12, p. 78-82, 1961.
- [172] Wu E.M.: Application of Fracture Mechanics to Anisotropic Plates, Trans. ASME, Journal of Appl. Mechanics. E, 34, p. 967-974, 1967.
- [173] Yang B. and Mall S.: On Crack Initiation Mechanisms in Fretting Fatigue, Trans. ASME, Journal of Appl. Mechanics. Vol. 68, 1, p. 76-80, 2001.
- [174] Zhang S. and Hsia K.J.: Modeling the Fracture of a Sandwich Structure due to Cavitation in a Ductile Adhesive Layer, Trans. ASME, Journal of Appl. Mechanics. vol. 68, 1, p. 93-100, 2001.
- [175] Zhu X.K., Jang S.K.: J-R curves corrected by load -independent constraint parametr in ductile crack growth. Eng. Fract. Mech. Vol. 68, 285-301, 2001.
- [176] Zienkiewicz O.C.: The Finite Element Method in Engineering Science. Mc Graw-Hill, London, New York 1971.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD4-0005-0045