PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Effects of pore structure on freezing and thawing deterioration

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Manufacturing of concrete resistant to freezing and thawing requires an in de understanding of the mechanisms triggering deterioration. Despite numerous attempts, a definitive and fully explanatory model has yet to be formulated. This paper presents part of study which analyzes influence of pore structure of cement-based matrix on the frost durability of Ordinary Portland Cement mortar is analysed. An empirical investigation was carried out on five air-entrained and one non-air- entrained mortar (with water-to-binder (W/B) ratio 0.4) subjected up to 732 freezing/thawing (Frr) cycles. Various concentrations of air-entraining admixture were used to differentiate the pore-structure of mortar. The examination of the microstructure and composition of the cement paste was performed by means of Scanning Electron Microscope (SEM) and Mercury Intrusion Porosimetry (MIP). Presented results demonstrate the magnitude of alterations to pore configuration due to pure freezing/thawing and its effect on the mechanical characteristics (compressive/flexural strength). Finally, on the grounds of apparent transformation. a generic pore size distribution of frost resistant cement-matrix is proposed.
Rocznik
Tom
Strony
190--200
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
  • Construction Materials, Glasgow Caledonian University, UK
autor
  • Glasgow Caledonian University, UK
autor
  • Department of Building Physics and Building Materials, Technical University of Lodz, Poland
Bibliografia
  • 1. BEDDOE, R.E. and SETZER, M.J., 1988. A Low-Temperature DSC Investigation of Hardened Cement Paste Subjected to Chloride Action. Cement and Concrete Research, 18(2): 249-256.
  • 2. BENTZ, D.P. and GARBOCZI, E.J., 1991. Percolation of the phases in a three-dimensional cement paste microstrnctitral model. Cement and Concrete Research, 21: 325-344.
  • 3. Centre d'lnformation de l'lnsdustrie Cimentiere Beige, 1957. Le Beton et le gel, Bui, 61,62,63,64.
  • 4. GARBOCZI, E.J., 1990. Permeability, diffusivity and microstructuralparameters: A critical review. Cement and Concrete Research, 20: 591-601.
  • 5. HILLING, W.B. and TURNBULL, D., 1956. Theory' of crystal growth in andercooled pore liquids. Journal of Chemical Physics., 24(24).
  • 6. KLEMM, A.J., 1994. The influence of Admixtures on the Microstructural Features and Mechanical Properties of Cementitious Materials Subjected to Freezing and Thawing Cycles. PhD Thesis, Strathclyde University, Glasgow.
  • 7. KLEMM, A.J. and KLEMM, P., 1997a. Ice Formation in Pores in Polymer Modified Concrete-1. The influence of the Admixtures on the Water to Ice Transition. Building and Environment, 32(3): 195-198.
  • 8. KLEMM, A.J. and KLEMM, P., 1997b. Ice Formation in Pores in Polymer Modified Concrete-II. The influence of the Admixtures on the Water to Ice Transition in Cementitious Composites Subjected to Freezing/Thawing Cycles. Building and Environment, 32(3): 199-202.
  • 9. KLEMM, A.J., WIELOCH, M, KLEMM, P. and MARKS, W., 2004. Multicriterion optimization approach in a design of cementitious composites with improved resistance to freezing/thawing. In: C.A. Brebbia and W.P. De Wilde (Editors), High Performance Structures and Materials II. WIT Press, Ancona, Italy, pp. 579-587.
  • 10. KUKKO, H., 1992. Frost effects on the microstructure of high strength concrete, and methods for their analysis. VTT, Technical Research Centre of Finland, Espoo, Finland.
  • 11. LEŚNIEWSKA, M. and POGORZELSKI, J.A., 1976. A study on the capillary movement of water in the selected building materials. Arch. Inz. Lad., 2: 333-343.
  • 12. MEHTA, P.K., 1986. Concrete: Structure, Properties and Materials. Prentice Hall, New York.
  • 13. MEHTA, P.K. and MANMOHAN, D., 1980. Pore size distribution and permeability of hardened cement pastes, 7th International Congress of Chemistry of Cement. Editions Septima, Paris, pp. VII-l-VII-5.
  • 14. MIKHAIL, R.S. and ROBENS, E., 1983. Microstructure and thermal analysis of solid surface. John Wiley & Sons, New York, 285 pp.
  • 15. NEVILLE, A.M., 1995. Properties of Concrete. Longman Scientific&Technical, N.Y.
  • 16. NYAME, B.K. and ILLSTON, J.M., 1980. Capillary pore structure and permeability of hardened cement pastes., 7th International Congress of Chemistry of Cement. Editions Septima, Paris, pp. VI-181-V1-185.
  • 17. O'FARRELL, M., WILD, S. and SABIR, B.B., 2001. Pore size distribution and compressive strength of waste clay brick mortar. Cement and Concrete Composites, 23:81-91.
  • 18. PODVALNYI, A.M., 1976. Phenomenological aspect of concrete durability theory. Materials and Structures, 9(51): 151-162.
  • 19. POWERS, T.C., 1951. Influence of cement characteristics on the frost resistance of concrete, Portland Cement Association, Chicago.
  • 20. RAVAGNIOLI, A., 1975. Evaluation of the frost resistance of presses ceramic products. Transactions of the British Ceramic Society, 75: 92-95.
  • 21. REVERTEGAT, E. and BERNAUDAT, F., 1986. Role de laporosite dans la durabilite des Hants hydrauliques, 8th International Congress of Chemistry of Cement, Rio de Janerio, pp. 36-40.
  • 22. ZAITSEV, Y.B. and WITTMANN, F.H., 1981. Simulation of crack propagation and failure concrete. Materials and Structures, 14(83): 357-365.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD4-0003-0034
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.