PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Apollonian metric: the comparison property, bilipschitz mappings and thick sets

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Apollonian metric is a generalization of the hyperbolic metric to arbitrary open sets in Euclidean spaces. In this article we show that the Apollonian metric is comparable, to the jG metric in the set G if and only if its complement is unbounded and thick in the sense of Väisälä Vuorinen and Wallin [Thick sets and quasisymmetric maps, Nagoya Math. J. 135 (1994), 121-148] . These conditions are also equivalent to the following: there exists L > 1 such that all Euclidean L-bilipschitz mappings are Apollonian bilipschitz with uniformly bounded constant.
Wydawca
Rocznik
Strony
209--232
Opis fizyczny
Bibliogr. 40 poz.
Twórcy
Bibliografia
  • [1] Agard, S., Gehring, F., Angles and quasiconformal mappings, Proc. London Math.Soc. (3) 14a (1965), 1-21.
  • [2] Aldred, M., Armitage, D., Inequalities for su'rface integrals of non-negative subharmonic functions, Comment. Math. Univ. Carolin. 39(1) (1998), 101-113. (1954),311-313.
  • [3] Barbilian, D., Einordnung von Lobatschewsky's Massbestimmung in gewisse allgemeine Metrik der Jordanschen Bereiche, Casopsis Mathematiky a Fysiky 64 (1934-35), 182-183.
  • [4] Beardon, A., Geometry of Discrete Groups, Grad. Text in Math. 91, Springer, New York, 1995.
  • [5] Beardon, A., The Apollonian metric of a domain in R”, in "Quasiconformal Mappings and Analysis, Springer, New York, 1998.
  • [6] Boskoff, W.-G., Hyperbolic Geometry and Barbilian Spaces, Istituto per la Ricerca di Base, Ser. Monographs Adv. Math., Hardronic Press, .Inc., Palm Harbor, FL, 1996.
  • [7] Boskoff, W.-G., Varietati cu structurii metrica Barbilian (in Romanian) [Manifolds with Barbilian Metric Structure], Colectia Biblioteca de Matematica [Mathematics Library Collection], Ex Ponto, Editura, Constanta, 2002.
  • [8] Caraman, P., n-dimensional quasiconformal (QCf) mappings, Revised, enlarged and translated from the Romanian by the author, Editura Academici Romane, Bucharest, Abacus Press, Tunbridge Wells, Haessner Publishing, Inc., Newfoundland, N.J., 1974.
  • [9] Chakerian, G. D., Groemer, H., Convex bodies of constant width, in "Convexity and its applications", Birkhauser, Basel, 1983,49-96.
  • [10] Gehring, F., Hag, K., The Apollonian metric and quasiconformal mappings, in "In the tradition of Ahlfors and Bers" (Stony Brook, NY, 1998); Contemp. Math. 256, Amer. Math. Soc., Providence, RI, 2000, 143-163.
  • [11] Gehring, F., Osgood, B., Uniform domains and the quasihyperbolic metric, J. Anal. Math. 36 (1979), 50-74.
  • [12] Gehring, F., Palka, B., Quasiconformally homogeneous domains, J. Anal. Math. 30 (1976), 172-199.
  • [13] Granlund, S., Lindqvist, P., Martio, O., F-harmonic measure in space, Ann. Acad. Sci. Fenn. Math. 7 (1982),233-247.
  • [14] Hasto, P., The Apollonian metric: uniformity and quasiconvexity, Ann. Acad. Sci. Fenn. Math. 28 (2003), 385-414.
  • [15] Hasto, P., The Apollonian metric: limits of the approximation and bilipschitz properties, Abstr. Appl. Anal. 2003(20), 1141-1158.
  • [16] Hasto, P., The Apollonian metric: quosi-isotropy and Seittenranta's metric, Comput. Methods Funct. Theory 4(2) (2004), 249-273.
  • [17] Hasto, P., The Apollonian inner metric, Comm. Anal. Geom. 12(4) (2004), 927-947.
  • [18] Hasto, P., Gromov hyperbolicity of the jG and jG metrics, Proc. Amer. Math. Soc. 134 (2006), 1137-1142.
  • [19] Hasto, P., Ibragimov, Z., Apollonian isometries of planar domains are Moebius mappings, J. Geom. Anal. 15(2) (2005), 229-237.
  • [20] Hasto, P., Ibragimov, Z., Apollonian isometries of regular domains are Moebius mappings, Ann. Acad. Sci. Fenn. Math. 32(1) (2007), 83-98.
  • [21] Hilbert, D., Ueber die gerade Linie als kuerzeste Verbindung zweier Punkte, Math. Ann. 46 (1895), 91-98.
  • [22] Ibragimov, Z., The Apollonian metric, sets of constant width and Moebius modulus of ring domains, Ph.D. Thesis, University of Michigan, Ann Arbor, 2002.
  • [23] Ibragimov, Z., On the Apollonian metric of domains in F, Complex Var. Theory Appl. 48 (2003), 837-855.
  • [24] Ibragimov, Z., Conformality of the Apollonian metric, Comput. Methods Funct. Theory 3 (2003), 397-411.
  • [25] Jonsson, A., Wallin, H., Function Spaces on Subsets of Rn, Math. Rep. 2(1),1984.
  • [26] Kelly, P., Barbilian geometry and the Poincare model, Amer. Math. Monthly 61 (1954), 311-319.
  • [27] Lehto, O., Virtanen, K., Quasiconformal Mappings in the Plane, 2nd ed., Die Grundlehren der mathematischen Wissenschaften, Band 126, Springer-Verlag, Berlin-Heidelberg-New York, 1973.
  • [28] Mattila, P., Vuorinen, M., Linear approximation property, Minkowski dimension, and quasiconformal spheres, J. London Math. Soc. (2) 42 (1990), 249-266.
  • [29] Mitrea, M., Dirichlet integrals and Gaffney-Priedrichs inequalities in convex domains, Forum Math. 13(4) (2001), 531-567.
  • [30] Rhodes, A., An upper bound for the hyperbolic metric of a convex domain, Bull. London Math. Soc. 29 (1997), 592-594.
  • [31] Salli, A., On the Minkowski dimension of strongly porous fmctal sets in Rn, Proc. London Math. Soc. (3) 62(2) (1991), 353-372.
  • [32] Seittenranta, P., Mubius-invariant metrics, Math. Proc. Cambridge Philos. Soc. 125 (1999), 511-533.
  • [33] Trotsenko, D., Properties of region-1 with a nonsmooth boundary, Sibirsk. Mat. Zh. 22(4) (1981), 221-224.
  • [34] Vaisala, J., Quasisymmetric embeddings in euclidean spaces, Trans. Amer. Math. Soc. 264 (1981), 191-204.
  • [35] Vaisala, J., Bi-Lipschitz and quasisymmetric extension properties, Ann. Acad. Sci. Fenn. Math. 11(2) (1986), 239-274.
  • [36] Vaisala, J., Porous sets and quasisymmetric maps, Trans. Amer. Math. Soc. 299 (1987), 525-533.
  • [37] Vaisala, J., Uniform domains, Tohoku Math. J. (2) 40(1) (1988), 101-118.
  • [38] Vaisala, J., Vuorinen, M., Wallin, H., Thick sets and quasisymmetric maps, Nagoya; Math. J. 135 (1994), 121-148.
  • [39] Vuorinen, M., Quadruples and spatial quasiconformal mappings, Math. Z. 205(4) (1990), 617-628.
  • [40] Wallin, H., Wingren, P., Dimension and geometry of sets defined by polynomial in-equalities, J. Approx. Theory 69(3) (1992), 231-249.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD4-0002-0025
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.