PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Remarks on best approximations in generalized convex spaces

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we prove a best approximation theorem in generalized convex spaces. As an application, we derive a result on the existence of a maximal element and a coincidence point theorem in generalized convex spaces. The results of this paper generalize some known results in the literature.
Słowa kluczowe
Wydawca
Rocznik
Strony
181--188
Opis fizyczny
Bibliogr. 13 poz.
Twórcy
  • Faculty of Electrical Engineering University of Banja Luka 78000 Banja Luka Patre 5 Bosnia and Herzegovina, zmitrovic@etfbl.net
Bibliografia
  • [1] Border, K. C., Fixed point theorems with applications to economic and gam e theory, Cambridge University Press, Cambridge, 1985.
  • [2] Espinola, R., Khamsi, M. A., Introduction to Hyperconvex Spaces, Kluwer Academic Publisher, Dordrecht, 2001.
  • [3] Khamsi, M. A., KKM and Ky Fan theorems in hyperconvex metric spaces, J. Math. Anal. Appl. 204 (1996), 298-306.
  • [4] Kim, I. S., Park, S., Saddle point theorems on generalized convex spaces, J. Inequal. Appl. 5 (2000), 397-405.
  • [5] Lin, L. J., Applications ol a fixed point theorem in G-convex space, Nonlinear Anal. 46 (2001), 601-608.
  • [6] Nikodem, K., K-convex and K-concave set-valued functions, Zeszyty Nauk. Politech. Łódz. Mat., Łódź, 1989.
  • [7] Park, S., Continuous selection theorems in generalized convex spaces, Numer. Funct. Anal. Optim. 25 (1999), 567-583.
  • [8] Park, S., Fixed point theorems in hyperconvex metric spaces, Nonlinear Anal. 37 (1999), 467-472.
  • [9] Park, S., Kim, H., Admissible classes of multifunction on generalized convex spaces, Proc. Colloq. Natur. Sci. Seoul Natl. Univ. 18 (1993), 1-21.
  • [10] Park, S., Kim, H., Coincidence theorems for admissible multifunctions on generalized convex spaces, J. Math. Anal. Appl. 197 (1996), 173-187.
  • [11] Park, S., Kim, H., Foundations of the KKM theory on generalized convex; spaces, J. Math. Anal. Appl. 209 (1997), 551-571.
  • [12] Tan, K. K., Zhang, X. L., Fixed point theorems on G-convex spaces and applications, Proc. Nonlinear Funct. Anal. Appl. 1 (1996), 1-19.
  • [13] Yu, Z. T., Lin, L. J., Continuous selection and fixed point theorems, Nonlinear Anal. 52 (2003), 445-455.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD4-0002-0023
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.