PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Euler-Poincare formalism of coupled KdV type system and diffeomorphism group on S1

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper describes a wide class of coupled KdV equations. The first set of equations directly follow from the geodesic flows on the Bott-Virasoro group with a complex field. But the set of 2-component systems of nonlinear evolution equations, which includes dispersive water waves, Ito's equation, many other known and unknown equations, follow from the geodesic flows of the right invariant L2 metric on the semidirect product group [wzór], where Diff(S1) is the group of orientation preserving diffeomorphisms on a circle. We compute the Lie-Poisson brackets of the Antonowicz-Fordy system, and the mode expansion of these beackets yield the twisted Heisenberg-Virasoro algebra. We also give an outline to study geodesic flows of a H1 metric on [wzór].
Wydawca
Rocznik
Strony
261--282
Opis fizyczny
Bibliogr.30 poz.
Twórcy
autor
  • S.N. Bose National Centre for Basic Sciences, JD Block, Sector-3, Salt Lake Calcutta-700098, India
  • Department of Mathematics, University of Colorado at Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, Colorado 80933-7150, USA
Bibliografia
  • [1] Ablowitz, M., Clarkson, P. A., Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Math. Soc. Lecture Note Ser. 149, Cambridge University Press, Cambridge, 1991.
  • [2] Alber, M., Camassa, R., Fedorov, Yu., Holm, D., Marsden, J. E., The complex geometry of weak piecewise smooth solutions of integrable nonlinear PDE's of shallow water and Dym type, Comm. Math. Phys. 221(1) (2001), 197-227.
  • [3] Antonowicz, M., Fordy, A., Coupled, KdV equation with multi-Hamiltonian structures, Physica D 28 (1987), 345-357.
  • [4] Arbarello, E., De Concini, C, Kac, V. G., Procesí, C, Moduli space of curves and representation theory, Comm. Math. Phys. 117 (1988), 1-36.
  • [5] Arnold, V. I., Mathematical Methods of Classical Mechanics, Grad. Texts in Math. 60, 2nd ed., Springer-Verlag, New York, 1989.
  • [6] Billig, Y., Representations of the twisted Heisenberg-Virasoro algebra at level zero, Canad. Math. Bull. 46(4) (2003), 529-537.
  • [7] Camassa, R., Holm, D., A completely integrable dispersiveshallow water equation with peaked solutions, Phys. Rev. Lett. 71 (1993), 1661-1664.
  • [8] Cendra, H., Holm, D., Marsden, J., Ratiu, T., Lagrangian reduction, the Euler-Poincaré equations, and semidirect products, Trans. Amer. Math. Soc. 186 (1998). 1-25.
  • [9] Ebin, D., Marsden, J., Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. of Math. (2) 92 (1970), 102-163.
  • [10] Fuchssteiner, B., The Lie algebra structure of nonlinear evolution equations admitting infinite-dimensional abelian symmetry groups, Progr. Theoret. Phys. 65(3) (1981), 861-876.
  • [11] Guha, P., Ito equation as a geodesic flow on (DiffS(S1) ○ C∞(S1)), Arch. Math. (Brno) 36(4) (2000), 305-312.
  • [12] Guha, P., Diffeomorphism with some Sobolev metric, geodesic flow and integrable systems, J. Dynam. Control Systems 8(4) (2002), 529-545.
  • [13] Guha, P., Integrable geodesic flows on the (super)extension of Bott-Virasoro group, Lett. Math. Phys. 52 (2000), 311-328.
  • [14] Guha, P., Geodesic flows, bi-Hamiltonian structure and coupled KdV type systems, J. Math. Anal. Appl. 310(1) (2005), 45-56.
  • [15] Harnad, J., Kupershmidt, B. A., Symplectic geometries on T*G, Hamiltonian group actions and integrable systems, J. Geom. Phys. 16 (1995), 168-206.
  • [16] Khesin, B., Misiolek, G., Euler equations on homogeneous spaces and Virasoro orbits, Adv. Math. 176(1) (2003), 116-144.
  • [17] Kirillov, A. A., Infinite dimensional Lie groups: their orbits, invariants and representations. The geometry of moments, Lecture Notes in Math. 970 (1982), 101-123.
  • [18] Kirillov, A. A., Merits and demerits of the orbit method, Bull. Amer. Math. Soc. (N.S.) 36(4) (1999), 433-488.
  • [19] Kupershmidt, B. A., Mathematics of dispersive water waves, Comm. Math. Phys. 99(1) (1985), 51-73.
  • [20] Lazutkin, V. F., Penkratova, T. F., Normal forms and versal deformations for Hill's equation (in Russian), Funktsional. Anal, i Prilozhen. 9(4) (1975), 41-48.
  • [21] Marcel, P., Ovsienko, V., Roger, C, Extension of the Virasoro and Neveu-Schwartz algebras and generalized Sturm-Liouville operators, Lett. Math. Phys. 40 (1997), 31-39.
  • [22] Marsden, J. E., Ratiu, T. S., Introduction to Mechanics and Symmetry. A Basic Exposition of Classical Mechanical Systems, Texts Appl Math. 17, 2nd ed., Springer-Verlag, New York, 1999.
  • [23] Misiolek, G., A shallow water equation as a geodesic flow on the Bott-Virasoro group, J. Geom. Phys. 24 (1998), 203-208.
  • [24] Nutku, Y., Oguz, O., Bi-Hamiltonian structure of a pair of coupled KdV equations, Nuovo Cimento B (11) 105(12) (1990), 1381-1383.
  • [25] Ovsienko, V. Yu., Khesin, B. A., KdV super equation as an Euler equation, Funct. Anal. Appl. 21 (1987), 329-331.
  • [26] Segal, G., Unitary representations of some infinite dimensional groups, Comm. Math. Phys. 80 (1981), 301-342.
  • [27] Segal, G., The geometry of the KdV equation. Topological methods in quantum field theory (Trieste, 1990), Internat. J. Modern Phys. A 6(16) (1991), 2859-2869.
  • [28] Wadati, M., Konno, K., Ichikawa,L, A generalization of inverse scattering method, J. Phys. Soc. Japan 46(6) (1979), 1965-1966.
  • [29] Wang, J. P., A list of 1 + 1 dimensional integrable equations and their properties, Recent advances in integrable systems (Kowloon, 2000), J. Nonlinear Math. Phys. 9 (2002), suppl. 1, 213-233.
  • [30] Witten, E., Coadjoint orbits of the Virasoro group, Comm. Math. Phys. 114(1) (1988), 1-53.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD4-0001-0028
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.