PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Orthogonal bases for spaces of complex spherical harmonics

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper proposes an inductive method to construct bases for spaces of spherical harmonics over the unit sphere Ω 2q of Cq. The bases are shown to have many interesting properties, among them orthogonality with respect to the inner product of L²(Ω 2q). As a bypass, we study the inner product [f,g] = f(D)(g(z))(0) over the space P(Cq) of polynomials in the variables [wzór], in which f(D) is the differential operator with symbol f(z). On the spaces of spherical harmonics, it is shown that the inner product [. , .] reduces to a multiple of the L²(Ω 2q) inner product. Bi-orthogonality in (F(Cq), [. , .] ) is fully investigated.
Wydawca
Rocznik
Strony
113--132
Opis fizyczny
Bibliogr. 9 poz.
Twórcy
  • Departamento de Matemática, ICMC-USP — Säo Carlos, Caixa Postal 668, 13560-970 Säo Carlos SP, Brasil
  • Universidade Federal de Itajubá, ICE-DMC, Caixa Postal 50, 37500-903 Itajubá MG, Brasil
Bibliografia
  • [1] Axler, S., Bourdon, P., Ramey, W., Harmonic Function Theory (2nd edition), Graduate Texts in Mathematics 137, Springer-Verlag, New York, 2001.
  • [2] Koornwinder, T. H., The addition formula for Jacobi polynomials, II. The Laplace, type integral representation and the product formula, Math. Centrum Afd. Toegepaste Wisk., Report TW133 (1972).
  • [3] Koornwinder, T. H., The addition formula for Jacobi polynomials, III. Completion of the proof Math. Centrum Afd. Toegepaste Wisk., Report TW135 (1972).
  • [4] Lang, S.,Algebra, Addison-Wesley Publishing Co., Inc., Reading, Mass, 1965.
  • [5] Menegatto, V. A., Oliveira, C. P., Annihilating properties of convolution operators on complex spheres, Anal. Math. 31 (2005), 13-30.
  • [6] Müller, C, Analysis of Spherical Symmetries in Euclidean Spaces, Appl. Math. Sci. 129, Springer-Verlag, New York, 1998.
  • [7] Quinto, E. T., Injectivity of rotation invariant Radon transforms on complex hyper-planes in C”, „Integral geometry” (Brunswick, Maine, 1984), 245-260, Contemp. Math. 63, Amer. Math. Soc, Providence, RI, 1987.
  • [8] Rudin, W., Function Theory in the Unit Ball of Cn, Grundlehren Math. Wiss. 241, Springer-Verlag, New York-Berlin, 1980.
  • [9] Stein, E. M., Weiss, G., Introduction to Fourier Analysis on Euclidea,n Spaces, Princeton Math. Ser. 32, Princeton Univ. Press, Princeton, NJ, 1971.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD4-0001-0019
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.