PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Solutions of nonlinear singular boundary value problems

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We suty the existence of solutions to a class of problems u" + f(t,u)=0, u(0)=u(1)=0 where f(t, .) is allowed to be singular at t=0, t=1.
Wydawca
Rocznik
Strony
95--112
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
autor
  • Faculty of Mathematics, University of Łódź, Banacha 22, 90-238 Łódź, Poland, habibsebai@op.pl
Bibliografia
  • [1] Avery, R. I., Davis, J. M., Henderson, J., Three symmetric positive solutions for Lidstone problems by a generalization of the Leggett-Williams theorem, Electron. J. Differential Equations 40 (2000), 1-15.
  • [2] Dunninger, D. R., Kurtz, J. C., A priori bounds and existence of positive solutions for singular nonlinear boundary value problems, SIAM J. Math. Anal. 3 (1986), 595-609.
  • [3] Eloe, P. W., Henderson, J., Positive solutions for (n — 1, 1) conjugate boundary value problems, Nonlinear Anal. 10 (1997), 1669-1680.
  • [4] Gatica, J. A., Oliker, V., Waltman, P., Singular nonlinear boundary value problems for second-order ordinary differential equations, J. Differential Equations 79 (1989), 62-78.
  • [5] Gatica, J. A., Oliker, V., Waltman, P., Iterative procedures for nonlinear second order boundary value problems, Ann. Mat. Pura Appl. 4 (1990), 1-25.
  • [6] Guo, D., Lakshmikantham, V., Nonlinear Problems in Abstract Cones, Harcourt Brace Jovanovich, Publishers, Boston-San Diego-New York-Berkeley-London-Sydney-Tokyo-Toronto, 1988.
  • [7] Habets, P, Zanolin, F., Upper and lower solutions for a generalized Emden-Fowler equation, J. Math. Anal. Appl. 181 (1994), 684-700.
  • [8] Jiang, D., Gao, W., Upper and lower solution method and a singular BVP for the 1-dimensional p-Laplacian, J. Math. Anal. Appl. 252 (2000), 631-648.
  • [9] Lloyd, N. G., Degree Theory, Cambridge Tracts in Mathematics 73, Cambridge Univ. Press, Cambridge, 1978.
  • [10] Ma, R., Positive solutions of a nonlinear three-point boundary-value problem, Electron. J. Differential Equations 34 (1998), 1-8.
  • [11] Martin, R. H., jr., Nonlinear Operators and Differential Equations in Banach Spaces, John Wiley & Sons, New York-London-Sydney-Toronto, 1976.
  • [12] Przeradzki, B., Stańczy, R., Positive solutions for sublinear elliptic equations, Colloq. Math. 92 (2002), 141-151.
  • [13] O'Regan, D., Singular Dirichlel boundary value problems — superlinear and nonresonant case, Nonlinear Anal. 2 (1997), 221-245.
  • [14] Taliaferro, S. D., A nonlinear singular boundary value problem, Nonlinear Anal. 6 (1979), 897-904.
  • [15] Liu, Z., Li, F., Multiple positive solutions of nonlinear two-point boundary value problems, J. Math. Anal. Appl. 203 (1996), 610-625.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD4-0001-0018
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.