Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we prove existence results for singular problem [wzór]. Here the positive Carathédory function ∫ may be singular at the zero value of all its phase variables. Proofs are based on the Leray-Schauder degree and Vitali's convergence theorem.
Wydawca
Czasopismo
Rocznik
Tom
Strony
93--107
Opis fizyczny
Bibliogr. 13 poz.
Twórcy
autor
autor
- Department of Applied Mathematics. Beijing Institute of Technology, Beijing 100081, P. R. China, tianyu2992@163.com
Bibliografia
- [1] Agarwal, R. P., O'Regan, D., Wong, P. J. Y., Positive Solutions of Differential, Difference and Integml Equations, Kluwer Academic Publishers, Dordrecht, 1999.
- [2] Agarwal, R. P., O'Regan, D., Singular Differential and Integral Equations with Applications, Kluwer Academic Publishers, Dordrecht, 2003.
- [3] Agarwal, R, P., O'Regan, D., Rachunkova., I., Stanek, S., Two-point higher-order BVPs with singularities in phase variables, Comput. Math. Appl. 46 (2003) 1799-1826.
- [4] Agarwal, R. P., O'Regan, D., Stanek, S., Singular lidstone boundary value problem with given maximal values for solutions, Nonlinear Anal. 55 (2003), 859-881.
- [5] Bartle, R. G., A Morden Theory of Integration, Grad. Stud. Math. 32, Amer. Math, Soc., Providence, RI, 2001.
- [6] Deimling, K., Nonlinear Functional Analysis, Springer, Berlin-Heidelberg, 1985.
- [7] Eloe, P. W., Henderson, J ., Positive solutions for ( n -1, 1) conjugate boundary value problems, Nonlinear Anal. 28 (1997), 1669-1680.
- [8] Karakostas, G. L., Tsamatos, P. Ch., On a nonlocal boundary value problem at resonance, J, Math, Anal. Appl. 259 (2001), 209-218.
- [9] Karakostas, G. L., Tsamatos, P. Ch., Nonlocal boundary vector value problems for ordinary differential equations of higher order, Nonlinear Anal, 51 (2002), 1421-1427.
- [10] Liu, Bing, Positive sollutions of three-point boundary value problems for the one dimensional p-Laplacian with infinitely many singularities, Appl. Math. Lett. 17 (2002), 655-661,
- [11] Natanson, I. P., Theorie der Punktionen einer reelen Veraenderlichen, Akademie-Verlag, Berlin, 1969
- [12] Rachunkova., I., Stanek, S., A singular boundary value problem for odd-order differential equations, J. Math. Anal, Appl. 291 (2004), 741-756
- [13] Zhang, Zhongxin, Wang, Junyu, The upper and lower solution method for a class of singular nonlinear second order three-point boundary value problems, J. Comput. Appl. Math. 147 (2002), 41-52.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD4-0001-0009