PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Existence of solutions for nonlocal boundary value problem with singularity in phase variables

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we prove existence results for singular problem [wzór]. Here the positive Carathédory function ∫ may be singular at the zero value of all its phase variables. Proofs are based on the Leray-Schauder degree and Vitali's convergence theorem.
Wydawca
Rocznik
Strony
93--107
Opis fizyczny
Bibliogr. 13 poz.
Twórcy
autor
autor
  • Department of Applied Mathematics. Beijing Institute of Technology, Beijing 100081, P. R. China, tianyu2992@163.com
Bibliografia
  • [1] Agarwal, R. P., O'Regan, D., Wong, P. J. Y., Positive Solutions of Differential, Difference and Integml Equations, Kluwer Academic Publishers, Dordrecht, 1999.
  • [2] Agarwal, R. P., O'Regan, D., Singular Differential and Integral Equations with Applications, Kluwer Academic Publishers, Dordrecht, 2003.
  • [3] Agarwal, R, P., O'Regan, D., Rachunkova., I., Stanek, S., Two-point higher-order BVPs with singularities in phase variables, Comput. Math. Appl. 46 (2003) 1799-1826.
  • [4] Agarwal, R. P., O'Regan, D., Stanek, S., Singular lidstone boundary value problem with given maximal values for solutions, Nonlinear Anal. 55 (2003), 859-881.
  • [5] Bartle, R. G., A Morden Theory of Integration, Grad. Stud. Math. 32, Amer. Math, Soc., Providence, RI, 2001.
  • [6] Deimling, K., Nonlinear Functional Analysis, Springer, Berlin-Heidelberg, 1985.
  • [7] Eloe, P. W., Henderson, J ., Positive solutions for ( n -1, 1) conjugate boundary value problems, Nonlinear Anal. 28 (1997), 1669-1680.
  • [8] Karakostas, G. L., Tsamatos, P. Ch., On a nonlocal boundary value problem at resonance, J, Math, Anal. Appl. 259 (2001), 209-218.
  • [9] Karakostas, G. L., Tsamatos, P. Ch., Nonlocal boundary vector value problems for ordinary differential equations of higher order, Nonlinear Anal, 51 (2002), 1421-1427.
  • [10] Liu, Bing, Positive sollutions of three-point boundary value problems for the one dimensional p-Laplacian with infinitely many singularities, Appl. Math. Lett. 17 (2002), 655-661,
  • [11] Natanson, I. P., Theorie der Punktionen einer reelen Veraenderlichen, Akademie-Verlag, Berlin, 1969
  • [12] Rachunkova., I., Stanek, S., A singular boundary value problem for odd-order differential equations, J. Math. Anal, Appl. 291 (2004), 741-756
  • [13] Zhang, Zhongxin, Wang, Junyu, The upper and lower solution method for a class of singular nonlinear second order three-point boundary value problems, J. Comput. Appl. Math. 147 (2002), 41-52.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD4-0001-0009
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.