Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A multiobjective nonlinear programming problem is considered. Sufficiency theorems are derived for efficient and properly efficient solutions under generalized (F, ρ)-convexity assumptions. Weak, strong and strict converse duality theorems are established for a general Mond-Weir type dual relating properly efficient solutions of the primal and aual problems.
Wydawca
Czasopismo
Rocznik
Tom
Strony
19--33
Opis fizyczny
Bibliogr. 9 poz.
Twórcy
autor
- Department of Mathematics, Aligarh Muslim University, Aligarh 202 002, India, iahmad@postmark.net
Bibliografia
- [1] Bector, C. R., Klassen, J. E., Duality for a nonlinear programming problem, Utilitas Math. 11 (1977), 87-99.
- [2] Geoffrion, A. M., Proper efficiency and the theory of vector maximization, J. Math. Anal. Appl. 22 (1968), 618-630.
- [3] Gulati, T. R., Islam, M. A., Sufficiency and duality in multiobjective programming involving generalized, F-convex functions, J. Math. Anal. Appl. 183 (1994), 181-195.
- [4] Hanson, M. A., Mond, B., Further generalizations of convexity in mathematical programming, J. Inform. Optim. Sci. 3 (1982), 25-32.
- [5] Mahajan, D. G., Vartak, M. N., Generalization of some duality theorems in nonlinear programming, Math. Program. 12 (1977), 293-317.
- [6] Mond, B., Weir, T., Generalized concavity and, duality, in „Generalized Concavity in Optimization and Economics”, S. Schaible and W. T. Ziemba, eds., Academic Press, New York, 1981, 263-279.
- [7] Preda, V., On efficiency and duality for multiobjective programs, J. Math. Anal. Appl. 166 (1992), 265-277.
- [8] Vial, J. P., Strong and weak convexity of sets and functions, Math. Oper. Res. 8 (1983), 231-259.
- [9] Weir, T., Proper efficiency and duality for vector valued, optimization problems, J. Austral. Math. Soc. Ser. A 43 (1987), 21-34.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD4-0001-0002