PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The ions' channels conditioning the biological function of Lupinus luteus ferritin

Identyfikatory
Warianty tytułu
PL
Wpływ kanałów jonowych na biologiczną funkcję ferrytyny
Języki publikacji
PL
Abstrakty
PL
Badanie procesu uwalniania żelaza z ferrytyny jest bardzo ważne z punktu widzenia biologicznej funkcji tego białka roślinnego. Rola ferrytyny łubinowej polega na gromadzeniu i przechowywaniu żelaza w osłonie proteinowej oraz na uwalnianiu go w razie potrzeb organizmu. Żelazo wnika do środka ferrytyny dzięki obecności w jej płaszczu białkowym kanałów jonowych. Dlatego też w pracy tej zaproponowano prosty model kinetyczny migracji jonów Fe2+ przez kanał oparty na elektrodyfuzyjnym równaniu Nernsta-Planca. Zgodnie z założeniami tego modelu obserwujemy różnicę pomiędzy stałą szybkości migracji jonów żelaza(II) do wnętrza powłoki białkowej ze stałą szybkości dyfuzji tych jonów na zewnątrz białka. W odniesieniu do zaprezentowanego modelu kinetycznego różnicę tę można wytłumaczyć rozkładem pola elektrycznego wzdłuż kanałów jonowych oraz silnym wpływem obdarzonych ładunkiem indywiduów chemicznych.
EN
The investigation of iron release from the ferritin core became very important for our understanding of the biological function of lupine ferritin: protection of the environment against heavy metal ions and supplementing the biological systems with iron. Therefore we propose a simple model of Fe2+ ions migration through the channel. This model is based on the Nernst-Planck electrodiffusion equation. According to this model we observed differences between the constant rate for uptake kuptake and constant rate for release Krelease. This observation can be explained by the control of migration of Fe2+ ions through the channels via distribution of electric field around them and it is strictly controlled by the charged individuals.
Rocznik
Tom
Strony
5--22
Opis fizyczny
Bibliogr. 42 poz.
Twórcy
autor
  • Technical University of Łódź
autor
  • Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań
  • Technical University of Łódź
  • Polish Academy of Sciences, Poznań
Bibliografia
  • [1] Briat J.F. and Lobreaux S.: Iron storage and ferritin in plants, Met. Ions Biol. Syst, 35, 563-84, (1998).
  • [2] Briat J.F. and Lobreaux S.: Iron transport and storage in plants. Trends Plant Sei., 2, 187-193,(1997).
  • [3] Deak M., Horvath G.V., Davletova S., Török K., Sass L., Vass I., Barna B., Kiraly Z., Dudits D.: Plants ectopically expressing the iron-binding protein, ferritin, are tolerant to oxidative damage and pathogens. Nat. Biotechnol., 17(2), 192-196, (1999).
  • [4] Waldo G.S., Wright E., Whang Z.H., Briat J.F., Theil E.C., Sayers D.E.: Formation of the Ferritin Iron Mineral Occurs in Plastids. Plant Physiol., 109(3), 797-802, (1995).
  • [5] Andrews S.C., Arosio P., Bottke W., Briat J.F., Von Dari M., Harrison P.M., Laulhere J.P., Levi S., Lobreaux S., Yewdall S.J.: Structure, Function, and Evolution of Ferritins. J. Inorg. Biochem., 47,161-174,(1992).
  • [6] Hempstead P.D., Yewdall S.J., Fernie A.R., Lawson D.M., Artymiuk P.J., Rice D.W., Ford G.C., Harrison P.M.: Comparison of the Three-Dimensional Structures of Recombinant Human H and Horse L Ferritins at High Resolution. J. Mol. Biol., 268, 424-448, (1997).
  • [7] Arosio P., Adelman T.G., Drysdale J.W.: On Ferritin Heterogenity. J. Biol. Chem., 253, 4451-4458, (1978).
  • [8] Chasteen N.D.: Ferritin. Uptake, Storage and Release of Iron. Met. Ions Biol. Syst, 35,479-514,(1998).
  • [9] Levi S., Luzzago A., Cesareni G., Cozzi A., Franceschinelli F., Albertini A., Arosio P.J.: Mechanism of Ferritin Iron Uptake: Activity of the H-chain and Deletion Mapping of the Ferro-oxidase Site - A Study of Iron Uptake and Ferro- oxidase Activity of Human-Liver, Recombinant H-Chain Ferritins, and of 2 H- Chain deletion Mutants. J. Biol. Chem., 263, 18086-18092, (1988).
  • [10] Lobreaux S., Massenet O., Briat J.F.: Iron Induces Ferritin Synthesis in Maize. Plantlets Plant Mol. Biol., 19, 563-575, (1992).
  • [11] Santabrogio P., Levi S., Cozzi A., Corsi B., Arosio P.: Evidence that the Specificity of Iron Incorporation into Homopolymers of Human Ferritin L- and H- Chains Is Conferred by the Nucleation and Ferroxidase centers. Biochem. J., 314, 139-144,(1996).
  • [12] Wardrop A.J., Wicks R.E., Entsch B.: Occurrence and expression of members of the ferritin gene family in cowpeas. Entsch. B. Biochem. J., 337(3), 523-530, (1999).
  • [13] Ford G.C., Harrison P.M., Rice D.W., Smith J.M.A., Treffry A., White J.L., Yariv J.: Ferritin: Design and Formation of an Iron-Storage Molecule. Phil. Trans. R. Soc. bond., 304, 551-564, (1984).
  • [14] Stefanini S., Desideri A., Vecchini P., Drakenberg T., Chiancone E.: Identyfication of the Iron Entry Channels in Apoferritin. Chemical Modification and Spectroscopic Studies. Biochemistry, 28, 378-382, (1989).
  • [15] Harrison P.M. and Arosio P.: Molecular Properties, Iron Storage Function and Cellular Regulation. Biochim. Biophys. Acta, 1275, 161-203,(1996).
  • [16] Levi S., Santabrogio P., Corsi B., Cozzi A., Arosio P.: Evidence that residues exposed on the three-fold channels have active roles in the mechanism of ferritin iron incorporation. Biochem. J., 317, 467-473,(1996) .
  • [17] Lobreaux S., Yewdall S.J., Briat J.F., Harrison P.M.: Sequence and Predicted Three-dimensional Structure of Pea Seed (Pisum sativum) Ferritin. Biochem. J., 288,931-939,(1992).
  • [18] Powell A.K.: Metal Ions in Biological Systems: Iron transport and storage in Microorganisms, Plants and Animals. Vol. 35, p. 515. [In:] Sigel, A.and Sigel, H. (ed.), Dekker, New York, (1998).
  • [19] Proulx-Curry P.M. and Chasteen N.D.: Molecular aspects of iron uptake and storage in ferritin. Coord. Chem. Rev., 144, 347-368, (1995).
  • [20] Chasteen N.D. and Harrison P.M.: Mineralization in Ferritin: An Efficient Means of Iron Storage. J. Struct. Biol., 126(3), 182-94,(1999).
  • [21] Fobis-Loisy I., Aussei L., Briat J.F.: Post-transcriptional regulation of plant ferritin accumulation in response to iron as observed in the maize mutant ys1. FEBS Lett., 397(2-3) 149-54, (1996).
  • [22] Proudhon D., Wei J., Briat J.F., Theil E.C.: Ferritin Gene Organization: Differences Between Plants and Animals Suggest Possible Kingdom-Specific Selective Constraints. J. Mol. Evol., 42(3), 325-336, ,(1996).
  • [23] Proudhon D., Briat J.F, and Lescure A.M.: Iron Induction of Ferritin Synthesis in Soybean Cell Suspensions. Plant Phisiol., 90, 586-590, (1989).
  • [24] Smól J. and Twardowski T., Properties of Lupin Ferritin and the Regulatory Mechanism of Its Biosynthesis. Biologia, 54(3), 309-313,(1999).
  • [25] Chung S-H. and Kuyucak S.: Recent advances in ion channel research, Biochim. Biophys. Acta, 1565, 267-286, (2002).
  • [26] Korcz A. and Twardowski T.: The effect of selected heavy metal ions on wheat germ - protective function of plant ferritin. Acta Physiol. Plant., 14(4), 185-190, (1992).
  • [27] Korcz A. and Twardowski T.: Lupin Ferritin: Purification and Characterization, Biosynthesis and Regulation of in vitro Synthesis in Plant System. J. Plant Physiol. 141,75-81,(1992).
  • [28] Donlin M.J., Frey R.F., Putnam C., Proctor J.K. and Bashkin J.K: Analysis of Iron in Ferritin, The Iron-Storage Protein. J. Chem. Ed., 75,437-441, (1998).
  • [29] Aubailly M., Santus R. and Salmon S.: Ferrous Ion Release from Ferritin by Ultraviolet-A Radiations. Photochem. Photobiol., 54, 769-773, (1991).
  • [30] Feng D.F. and Doolittle R.F.: Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J. Mol. Evol., 25, 351-360,(1987).
  • [31] Crichton R.R. and Charloteaux-Wauters M.: Iron Transport and Storage. Eur. J. Biochem., 164, 485-506, (1987).
  • [32] Funk F. and Lenders J.P., Crichton R.R., Schneider W.: Reductive Mobilization of Ferritin Iron. Eur. J. Biochem., 152, 167-172, (1985).
  • [33] Laulhere J.P. and Laboure A.M., Briat J.F.: Photoreduction and Incorporation of Iron into Ferritins. Biochem. J., 269, 79-84,(1990).
  • [34] Douglas T. and Rippoli D.R.: Calculated Electrostatic Gradients in Recombinant Human H Chain Ferritin. Protein Science, 7, 1083-91, (1998).
  • [35] Laulhere J.P. and Briat J.F.: Iron release and uptake by plant ferritin : effects of pH, reduction and chelation. Biochem. J., 290, 693-699, (1993).
  • [36] Pourzand C.: UVA irradiation induces immediate release of iron in human skin fibroblasts: The role of ferritin. Acad. Sei., 96, 6751-56, (1999).
  • [37] Price D.J. and Joshi J.G.: Ferritin. Binding of beryllium and other divalent metal ions. J. Biol. Chem., 258(18), 10873-880, (1983).
  • [38] Rama-Kumar T., and Prasad M.N.: Metal-binding properties of ferritin in Vigna mungo (L.) Hepper (Black gram): Possible role in heavy metal detoxification. Bull. Environ. Contam. Toxicol., 62(4) 502-507, (1999).
  • [39] Pollitt E.: Iron deficiency and cognitive function. Annu. Rev. Nutr., 13, 521-537, (1993).
  • [40] Beard J.L., Burton J.W., Theil E.C.: Purified ferritin and soybean meal can be sources of iron for treating iron deficiency in rats. J. Nutr., 126, 154-60, (1996).
  • [41] Andrews N.C.: Disorders of iron metabolism. New Eng. J. Med., 341(26), 1986- 95,(1999).
  • [42] Goto F., Yoshihara T., Shigemoto N., Toki S., Takaiwa F.: Iron fortification of riceseed by the soybean ferritin gene. Nat. Biotech., 17(3), 282-86, (1999).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD3-0009-0033
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.