PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Przemiany chemiczne NOx i SO2 w troposferze

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
The tropospheric chemistry of SO2 and NOx
Języki publikacji
PL
Abstrakty
PL
Opisano podstawowe procesy chemiczne, jakim podlegają w troposferze zanieczyszczenia atmosferyczne. Uwagę skupiono na najbardziej powszechnych zanieczyszczeniach, którymi są ditlenek siarki i tlenki azotu. Wśród procesów chemicznych zachodzących w fazie gazowej przedstawiono: podstawowy cykl fotochemiczny w układzie NO2, NO i O3, proces degradacji węglowodorów, źródła wolnych rodników, reakcje chemiczne prowadzące do powstawania PAN-u i gazowego HNO3 oraz reakcje utleniania SO2 prowadzące do powstawania aerozoli siarczanowych. Omawiając podstawowe reakcje chemiczne rozpuszczonego w wodzie ditlenku siarki, wyróżniono reakcje przebiegające z udziałem ozonu, natlenku wodoru, rodników OH· i HOܨ, związków azotu oraz wybranych związków organicznych. Podobnie opisano przebiegające w fazie wodnej przemiany tlenków azotu. W dalszej kolejności przedstawiono źródła O3, H2O2, OH · i HOܨ w roztworach wodnych. Opisując przemiany tlenków azotu i ditlenku siarki na powierzchni cząstek stałych, przytoczono wyniki eksperymentów, w których uwzględniono powierzchnie węglowe, jak również lotne popioły, cząstki gleby, tlenki i kryształki soli morskiej. Materiał zawarty systematyzuje i podsumowuje stan wiedzy w tej szybko rozwijającej się dziedzinie.
EN
Chemical processes taking place in the troposphere are very complex. Many chemical substances are involved in these processes. The group of organic substances is especially large. If one would like to specify all the simple chemical reactions it would take dozens of thousands of chemical reactions between hundreds or even thousands of substances. However it is possible to understand the transformations taking place in the complex chemical system analyzing the simplified chemical system. In this article basic chemical processes of air pollutants taking place in the troposphere are described. The attention is focused on the chemical transformations of the most popular air pollutants: sulfur dioxide and nitrogen oxides. The description of chemical processes taking place in the gas phase includes the following: the basic photochemical cycle in the NO2, NO and O3 system, degradation of hydrocarbons, the sources of free radicals, the chemical reactions producing PAN and gas-phase HNO3 as well as the chemical reactions of SO2 oxidation producing sulphuric aerosols. The presentation of chemical reactions of the dissolved SO2 covers reactions involving ozone, hydroperoxide, hydroxy and peroxy radicals, nitrogen species and some organic species. The transformations of nitrogen oxides in the liquid phase are described in the similar way. In the following chapter the sources of O3, H2O2, OH · and HOܨ in the liquid phase are described. The description of transformations of nitrogen oxides and sulphur dioxide on the surfaces of solid particles includes the results of experiments in which carbon surfaces, dust and soil particles, oxides surfaces and sea salt particles were used. The text is based on the up-to-date literature.
Rocznik
Strony
87--105
Opis fizyczny
Bibliogr. 55 poz.
Twórcy
  • Politechnika Warszawska, Instytut Systemów Inżynierii Środowiska, ul. Nowowiejska 20, 00-653 Warszawa
Bibliografia
  • [1] Anderson-Skold Y., Updating the chemical scheme for IVL photochemical trajectory model, IVL Report В 1151, Swedish Environmental Research Institute, Goteborg, Sweden 1995.
  • [2] Dodge M.C., Chemical oxidant mechanisms for air quality modelling: critical review, Atmospheric Environment 2000, 34, 2103-2130.
  • [3] Markiewicz M., Parametryzacja procesów chemicznych w modelach rozprzestrzeniania się zanieczyszczeń powietrza, Inżynieria i Ochrona Środowiska 2002, 5, 3-4, 311-330.
  • [4] Finlayson B., Pitts J., Atmospheric chemistry. Fundamentals and experimental techniques, John Wiley and Sons, New York 1986.
  • [5] Jacob J.D., Introduction to atmospheric chemistry, Princeton University Press, Princeton, New York 1999.
  • [6] Jenkin M.E., Clemitshaw K.C., Ozone and other secondary photochemical pollutants: chemical processes governing their formation in the planetary boundary layer, Atmospheric Environment 2000, 34, 2499-2527.
  • [7] Hevitt C.N., The atmospheric chemistry of sulphur and nitrogen in power station plumes, Atmospheric Environment 2001, 35, 1155-1170.
  • [8] Seinfeld J.H., Atmospheric chemistry and physics of air pollution, John Wiley and Sons, New York 1986.
  • [9] Seinfeld J.H., Pandis S.N., Atmospheric chemistry and physics, Wiley, New York 1998.
  • [10] Leighton P., Photochemistry of air pollution, Academic Press, New York 1961.
  • [11] Atkinson R., Atmospheric chemistry of VOCs and NOx, Atmospheric Environment 2000, 34, 2063-2101.
  • [12] Harris G.W. et al., Observations of nitrous acid in the Los Angeles atmosphere and implications for the predictions of ozone-precursor relationship, Environmental Scientific Technology 1982, 16,414.
  • [13] Kitto A.N., Harrison R.M., Nitrous and nitric acid measurements at sites in southeast England, Atmospheric Environment 1992, 26A, 235-241.
  • [14] Paulson S.E., Orlando J.J., The reactions of ozone with alkenes: an important source of OH in the boundary layer, Geophysical Research Letters 1996, 23, 3227-3730.
  • [15] Bey I. et al., The night time production of OH radicals in the continental troposphere, Geophysical Research Letters 1997, 24, 1069-1070.
  • [16] Zwoździak J., Prognozy i analizy stężeń zanieczyszczeń w powietrzu w regionie Czarnego trójkąta, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 1995.
  • [17] Ericson R.E. et al., The reaction of sulphur dioxide with ozone in water and its possible atmospheric significance, Atmospheric Environment 1977, 11, 813-817.
  • [18] Harrison H. et al., Aqueous phase oxidation of sulphites by ozone in the presence of iron and magnese, Atmospheric Environment 1982, 16, 1039-1041.
  • [19] Larson T.V. et al., Oxidation of sulphur dioxide by oxygen and ozone in aqueous solution: A kinetic study with significance to atmospheric processes, Atmospheric Environment 1978, 12, 1597-1611.
  • [20] Lagrange J. et al., Electrolyte effects on aqueous atmospheric oxidation of sulphur dioxide by ozone, Journal of Geophysical Research 1994, 99, 14595-14600.
  • [21] Botha C.F. et al., Kinetics and mechanism of the oxidation of sulphur (IV) by ozone in aqueous solutions, Atmospheric Environment 1994, 28, 3207-3212.
  • [22] Hoffmann M.R., Edwards J.O., Kinetics of oxidation of sulphite by hydrogen peroxide in acidic solution, Journal of Physical Chemistry 1975, 7, 2096-2098.
  • [23] Kunen S.M. et al., Aqueous oxidation of S02 by hydroxenperoxide, Journal of Geophysical Research 1983,88, 3671-3674.
  • [24] McArde J.V., Hoffmann M.R., Kinetics and mechanism of the oxidation of aquated sulphur dioxide by hydrogen peroxide at low pH, Journal of Physical Chemistry, 1983, 87, 5425-5429.
  • [25] Hoffmann M.R., Boyce S.D., Catalytic autooxidation of aqueous sulphur dioxide in relationship to atmospheric systems? Adv. Environmental Scientific Technology 1983, 12, 148-189.
  • [26] Tsunogai S., Oxidation rate of sulphite in water and its bearing on the origin of sulphate in meteorite precipitation? Geochemical Journal 1971, 5, 175-185.
  • [27] Huss A. J. et al., On the uncatalyzed oxidation of sulphur (IV) in aqueous solutions, Journal of American Chemical Society 1978, 100, 6252-6253.
  • [28] Martin L.R., Good T.W., Catalysed oxidation of sulphur dioxide in solution: the iron-magnese synergism, Atmospheric Environment 1991, 25A, 2393-2399.
  • [29] Clarke A.G., Radojevic M., Oxidation of S02 in rainwater and its role in acid rain chemistry, Atmospheric Environment 1987, 21, 1115-1123.
  • [30] Graedel T.E. i Weschler C.J., Chemistry within aqueous atmospheric aerosols and raindrops, Review in Geophysics 1981, 19, 505-539.
  • [31] Graendel T.E., Goldberg K.I., Kinetic studies of raindrop chemistry. Inorganic and organic processes, Journal of Geophysical Research 1983, 88, 10865.
  • [32] Chameides W.L., Davis D.D., The free radical chemistry of a cloud droplets and its impact upon the composition of rain, Journal of Geophysical Research 1982, 87, 4863-4877.
  • [33] Jacob D.J., Chemistry of OH in remote clouds and its role in the production of formic acid and peroxymonosulphonate, Journal of Geophysical Research 1986, 91, 9807-9826.
  • [34] Schwartz S.E., Gas and aqueous chemistry of H02 in liquid water clouds, Journal of Geophysical Research 1984, 89, 11589-11598.
  • [35] Cooper P.L., Abbott J.P.D., Heterogeneous interactions of OH and H02 radicals with surface characteristic of atmospheric particulate matter, Journal of Physical Chemistry 1996, 100, 2249- -2254.
  • [36] Boyce S.D., Hoffmann M.R., Kinetics and mechanism of the formation of hydroxymethane sulfonic acid at low pH, Journal of Physical Chemistry 1984, 88, 4740-4746.
  • [37] Chameides W.L., Possible role of N03 in the night time chemistry of a cloud, Journal of Geophysical Research 1986, 89, 4739-4755.
  • [38] Cho S.Y. et al., An evaluation of the effects on reductions in ambient levels of primary pollutants on sulphate and nitrate wet deposition, Atmospheric Environment 1989, 23, 1009-1031.
  • [39] Cooper W.J., Zika R.B., Photochemical formation of hydrogen peroxide in surface ground waters exposed to sunlight, Science 1983, 220, 711.
  • [40] Arakaki T., Faust B.C., Sources, sinks and mechanisms of hydroxyl radical (OH) photo production and consumption in authentic acidic continental cloud waters from Whiteface Mountain, New York: The role of Fe(r) (r = II, III) in photochemical cycle, Journal of Geophysical Research 1998, 103, 3487-3504.
  • [41] Ibusuki T.S. et al., Heterogeneous chemical reactions and processes between S02 and N02 and solids in the troposphere, Abstracts from the 6 International Symposium of the Commission on Atmospheric chemistry and global pollution, Peterborough, Ontario 1987.
  • [42] Hulett L.D. et al., Studies of sulphur compounds adsorbed on smoke particles and other solids by photoelectron spectroscopy, (w:) Determination of air quality, eds G. Mamontov, W.E. Shults Plenum Press, New York 1972, 179-187.
  • [43] Judeikis H.S. et al., Laboratory studies of heterogeneous reactions of S02, Atmospheric Environment 1978, 12, 1633.
  • [44] Barbarey B., Contour J.P., Mouvier G., Sulphur dioxide oxidation over atmospheric aerosol X-ray photoelectron spectra of sulphur dioxide adsorbed on V20 5 and carbon, Atmospheric Environment 1977, 11,351.
  • [45] Zhang J. et al., Photochemical oxidant processes in the presence of dust: an evaluation of the impact on ozone, nitrate and free radical formation, Journal of Applied Meteorology 1994, 33, 813-824.
  • [46] Denter FJ. et al., Role of mineral aerosol as a reactive surface in the global troposphere, Journal of Geophysical Research 1996, 101,22869-22889.
  • [47] Finlayson-Pitts B.J., Reactions of N02 with NaCl and atmospheric implications of NOCL formation, Nature 1983, 306, 6761.
  • [48] Ammann M. et al., Heterogeneous production of nitrous acid on soot in polluted air masses, Nature 1998, 395, 157-160.
  • [49] Liberti A.D. et al., Adsorption and oxidation of sulphur dioxide on particles, Atmospheric Environment 1978, 12, 255.
  • [50] Ravishankara A.R., Longfellow C.A., Observations of HN02 in polluted winter atmosphere: possible heterogeneous production on aerosols, Atmospheric Environment 1999, 34, 3865-3874.
  • [51] Calvert J.G. et al., Anomalous HN03/N0X ratio of remote tropospheric air: conversion of nitric acid to formic acid and NOx, Geophysical Research Letters 1994, 21, 2705-2709.
  • [52] Aumont B. et al., ON the N02 + soot reaction in the atmosphere, Journal of Geophysical Research 1999, 104, 1729-1736.
  • [53] Lammel G., Cape J.N., Nitrous acid and nitrate in the atmosphere, Chemical Society Review 1996, 25, 361-368.
  • [54] Andres-Hernandez M.D. et al., A DOAS study of the origin of nitrous acid at urban and non- urban sites, Atmospheric Environment 1996, 30, 175-180.
  • [55] Jacob J.D., Heterogeneous chemistry and tropospheric ozone, Atmospheric Environment 2000, 34,2131-2159.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD3-0004-0052
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.