PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of the impedance method for computing the current density inside a 3D conductor for low conductivity Magnetic Induction Tomography

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An algorithm is presented to calculate the current density (J) in a 3D conductor. This is a key part in the forward model for magnetic induction tomography (MIT). The conductor is discretised into a Cartesian grid consisting of a network of interconnected resistors. Circuit analysis e.g. branch current method in combination with sparse matrix techniques were used to solve the system. The method is formulated based for the low conductivity case, such as a weak diffusion effect. The results show the method is capable of producing accurate solution with less memory and computation time requirements than Maxwell, a commercial Finite Element simulator.
Rocznik
Tom
Strony
81--86
Opis fizyczny
Bibliogr. 13 poz.
Twórcy
autor
autor
autor
Bibliografia
  • BECK M.S., (1995), Selection of sensing techniques, Process tomography - Principles, Techniques and Applications, Butterworth-Heinemann, Oxford, chap. 3.
  • CHENG J., STUCHLY M.A., DeWAGTER C, MARTENS L., (1995), Magnetic field induced currents in human head from the use of portable appliances, Physics in Medicine and Biology, vol. 40, pp. 495-510.
  • DIMBYLOW P.J., (1998), Induced current densities from low frequency magnetic fields in a 2mm resolution anatomically realistic model of the body, Physics in Medicine and Biology, Vol. 43, pp.221-230.
  • GABRIEL S., LAU R.W., GABRIEL C, (1996), The dielectric properties of biological tissues. II. Measurements in the frequency range 10 Hz to 20GHz, Physiological measurement, Vol. 41, pp. 2251-2269.
  • KORJENEVSKY A.V., CHEREPENIN V., SAPETSKY S., (2000), Magnetic induction tomography: experimental realization, Physiological measurement, Vol. 21, pp. 89-94.
  • KTISTIS C, PEYTON A.J., (2007), Using outer boundary information for image reconstruction in magnetic induction tomography, ICEBI 2007, IFMBE Proceedings 17, pp. 464-467.
  • MERWA R., BRUNNER P., MISSNER A., HOLLAUS K., SCHARFETTER H., (2006), Solution of the inverse of magnetic induction tomography (MIT) with multiple objects: analysis of detectability and statistical properties with respect to the reconstructed conducting region, Physiological measurement. Vol. 27, pp. S249-S259.
  • MERWA R., HOLLAUS K. SCHARFETTER H., (2005), Solution of the inverse problem of magnetic induction tomography (MIT), Physiological. Measurement, Vol. 26, pp. 241-250.
  • NADEEM M., THORLIN T., GHANDI O.P., PERSSON M., (2003), Computation of electric field and magnetic simulation in human head using the 3-D impedance method, IEEE Transactions on Biomedical Engineering, vol. 50, pp. 900-907.
  • PEYTON A.J., (1995), Mutual Inductance Tomography, Process Tomography - Principles, Techniques and Applications, Butterworth-Heinemann, Oxford, pp. 85-100.
  • VAN RIENEN U., (2001), Numerical methods in computational electrodynamics, Linear systems in practical applications. Springer, UK.
  • WATSON S., KTISTIS C, DEKDOUK B., ARMITAGE D.W., PEYTON A.J., WILLIAMS R.J., GRIFFITHS H, (2007), Development of MIT for oil industry applications, 5lh World Congress on Industrial Process Tomography, Bergen, Norway.
  • WATSON S., WILLIAMS R.J., GRIFFITHS H., GOURH W., MORRIS A., (2003), Magnetic induction tomography: phase versus vector-voltmeter measurement techniques, Physiological measurement, Vol. 24, pp. 555-564.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD1-0020-0028
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.