PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Segmentacja tekstury obrazów z wykorzystaniem sieci synchronizowanych oscylatorów

Autorzy
Identyfikatory
Warianty tytułu
EN
Segmentation of textured images using network of synchronised oscillators
Języki publikacji
PL
Abstrakty
PL
Celem artykułu jest omówienie zasad działania sieci synchronizowanych oscylatorów. Zgodnie z teorią "chwilowej korelacji" sieć taka symuluje zjawiska zachodzące w ludzkim mózgu podczas procesu analizy sceny wizyjnej, pozwalając na wydzielenie występujących tam obiektów i obszarów. Dlatego sieć oscylatorów może być wykorzystana do segmentacji obrazów, w tym obrazów zawierających tekstury. W pracy przedstawiono przykłady zastosowania takiej sieci do segmentacji obrazów biomedycznych a także pokazano, że może być wykorzystana również do wykrywania brzegów obiektów w obrazach binarnych a także granic pomiędzy obszarami różniącymi się teksturą. Przykłady takich zastosowań zostały zawarte w pracy. Przeprowadzono również porównanie i dyskusję otrzymanych wyników segmentacji z wykorzystaniem sieci synchronizowanych oscylatorów oraz perceptronowej sieci neuronowej.
EN
This work presents principles of operation of synchronised oscillators network. According to "temporary correlation" theory this network simulates a process of visual scene analysis performed by human brain. This allows for scene object detection and such a network can be used for image segmentation. The segmentation can be performed also for image textures. Examples of biomedical textured images segmentation are presented. It is also demonstrated, that oscillator network can be used for object edge and texture boundary detection. Examples of such applications are included in this paper. Also, the performance of texture segmentation using network of synchronised oscillators and the perceptron neural network is compared and discussed.
Rocznik
Tom
Strony
75--105
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
Bibliografia
  • [1] E. Çesmeli, D. Wang, Motion segmentation Based on Motion/Brightness Integration and Oscillatory Correlation, IEEE Trans, on Neural Networks, 11, 4, pp. 935-947, 2000.
  • [2] E. Çesmeli, D. Wang, Texture Segmentation Using Gaussian-Markov Random Fields and Neural Oscillator Networks, IEEE Trans, on Neural Networks, 12, 2, pp. 394-404, 2001.
  • [3] K. Chen, D. Wang, A dynamically coupled neural oscillator network for image segmentation, Neural Networks, 15, pp. 423-439, 2002.
  • [4] K. Chen, D. Wang, Perceiving Geometric Patterns: From Spirals to Inside-Outside Relations, IEEE Trans, on Neural Networks, 12, 5, pp. 1084-1102,2001.
  • [5] K. Chen, D. Wang, X. Liu, Weight Adaptation and Oscillatory Correlation for Image Segmentation, 11, 5, pp. 1106-1123, 2000.
  • [6] D. Eck, A Network of Relaxation Oscillators that Finds Downbeats in Rhythms, Psychological Research, 1, 66, pp. 18-25, 2002.
  • [7] R. Gonzales, R. Woods, Digital Image Processing, Addison-Wesley, 1993.
  • [8] J. Kasprzak, M. Strzelecki, M. Krzeminska-Pakula, L. Chrzanowski, A. Materka, K.Wierzbowska, К. Zwierzak, J. Drozdz, Application of neuronal network for tissue identification of intracardiac masses in adults, XXIV Congress of the European Society of Cardiology, Berlin, (abstract), pp. 607, 2002.
  • [9] P. Linsay, D. Wang, Fast numerical integration of relaxation oscillator networks based on singular limit solutions, IEEE Trans, on Neural Networks, 9,3,523-532,1998.
  • [10] X. Liu, K. Chen, D. Wang, Extraction of Hydrographic Regions from Remote Sensing Images Using an Oscillator Network with Weight Adaptation, IEEE Trans, on Geoscience and Remote Sensing, 39, 1, pp. 207-211,2001.
  • [11] A. Materka (red.), Elementy cyfrowego przetwarzania obrazu, PWN 1991.
  • [12] T. Pavlidis, Grafika i przetwarzanie obrazów, WNT, Warszawa 1987
  • [13] M. Rhouma, H. Frigui, Self-Organization of Poulse Coupled Oscillators With Application to Clustering, IEEE Trans, on PAMI, 23, 2, pp. 180-195,2001.
  • [14] N. Shareef, D. Wang, R. Yagel, Segmentation of Medical Images Using LEGION, IEEE Trans. On Med. Imaging, 18, 1, pp. 74-91,1999.
  • [15] M. Strzelecki, Biomedical Texture Segmentation Using Linear Filter Based Features and Oscillator Network, Proc. of IEEE Signal Processing 2002, Poznań, Poland, pp. 27-32,2002.
  • [16] M. Strzelecki, Image Segmentation Based on Network of Synchronised Oscillators, Proc. of Interational Conference on Signals and Electronic Systems, Lodz, Poland, pp. 105-110, 2001.
  • [17] M. Strzelecki, Image Texture Segmentation Using Linear Filter Based Features and Network of Synchronised Oscillators, Proc. 12th Portuguese Conference on Pattern Recognition, Aveiro, Portugal, June 27-28, CD ROM, 2002.
  • [18] M. Strzelecki, Pattern Recognition Using Network of Synchronised Oscillators, Int. Proc. of Int. Conf. of Computer Vision and Graphics, vol. 2, Zakopane, pp. 716-721,2002.
  • [19] M. Strzelecki, Segmentation of Binary Images Using Network of Oscillators, Proc. of 2 National Conference Computer Recognition System, pp. 239-241,2001.
  • [20] M. Strzelecki, Segmentation of MRI trabecular-bone images using network of synchronised oscillators, Machine Graphics & Vision, 11,1, pp. 77-100, 2002.
  • [21] M. Strzelecki, J. Kasprzak, J. Drożdż, M. Krzemińska-Pakuła, Analysis of Intracardiac Masses in Cardiac Tumour Echocardiograms, Proc. of ECCTD 2003, 1-4 wrzesień, Kraków,t. Ill, pp. 145-148, 2003.
  • [22] M. Strzelecki, A. Materka, J. Sygut, A. Zalewska, Digital Image Processing Methods For Morphological Characterization Of Mast Cells In Selected Skin Diseases, Image Processing & Communications, 5, 1, pp. 45-56,1999.
  • [23] M. Strzelecki, Segmentation of Textured Images using Network of Synchronised Oscillators, Proc. of IEEE Signal Processing 2001, Poznań, Poland, pp. 105-108,2001.
  • [24] M. Strzelecki, P. Liberski, A. Zalewska, Segmentation of Mast Cell Images Using network of Synchronised Oscillators, Proc. of the International Conference Informatics for Health Care, Visaginas, Lithuania, pp. 81-88, 2002.
  • [25] C. von der Malsburg, The What and Why of Binding: The Modeler s Perspective, Neuron, 24, pp. 95-104, 1999.
  • [26] C. von der Malsburg, Buhmann J., Sensory segmentation with coupled neural oscillators, Biological Cybernetics, 67, pp. 233-242, 1992.
  • [27] D. Wang, Emergent Synchrony in Locally Coupled Neural Oscillators, IEEE Trans, on Neural Networks, 6,4, pp. 941-948,1995.
  • [28] D. Wang, Relaxation Oscillators and Networks, Wiley Encyclopedia of Electrical and Electronics Engineering, Wiley & Sons, 18, pp. 396-405, 1999.
  • [29] D. Wang, D. Terman, Locally excitatory globally inhibitory oscillators network, IEEE Trans, on Neural Networks, 6, 1, pp. 283-286, 1995.
  • [30] D. Wang, D. Terman, Image segmentation based on oscillatory correlation, Neural Computation, 9, pp. 805-836, 1997.
  • [31] L. Zhao, E. Macau, N. Omar, Scene Segmentation of the Chaotic Oscillator Network, Int. Journal of Bifurcation and Chaos, 10, 7, pp. 1697-1708,2000.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD1-0018-0011
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.