PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Temperatura przemiany szklistej - parametr stabilności żywności

Identyfikatory
Warianty tytułu
EN
The temperature of glass transition - factor of food stability
Języki publikacji
PL
Abstrakty
PL
Przemiana szklista jest jednym z najważniejszych zjawisk w ciałach amorficznych i prowadzi do drastycznych zmian ich właściwości. Przemiana ta, odniesiona do składników żywności, ułatwia - na równi z koncepcją aktywności wody - zrozumienie zmian, jakie zachodzą w żywności podczas zmiany zawartości wody lub temperatury. W artykule przedstawiono koncepcje przemiany szklistej, metody pomiaru temperatury tej przemiany oraz omówiono wykres stanu pozwalający określić stan produktu, a także przewidywać jego stabilność przechowalniczą w danej temperaturze.
EN
Glass transition is one of the most important phenomena in the amorphous substance and leads to the drastic changes of their characteristic. This transition with the respect to the food ingredients helps, together with concept of water activity, in understanding the complex changes when food`s water content and temperature are changed. In this work, the concept of glass transition and the methods of the glass transition temperature measurement have been presented as well as the state diagram was discussed what allows determining the state of the food as well as foreseeing its storage stability at a given temperature.
Rocznik
Strony
32--37
Opis fizyczny
Bibliogr. 62 poz.
Twórcy
autor
  • Wydział Nauk o Żywności SGGW, Warszawa
Bibliografia
  • 1. Ablett S., Drakle A.H., Izzard M.J., Lillford P.J. (1993): Studies of the glass transition in malto-oligomers.. In: The Glassy State in Foods, Chpt. 9 (eds. J.M.V. Blanshard and P.J. Lillford), Nottingham University Press, Loughborough, 189 - 206.
  • 2. Angell C.A., Tucker J.C. (1980): Heat capacity changes in glass-forming aqueous solutions and the glass transition in vitreous water. J. Phys. Chem., 84, 268 - 272.
  • 3. Belcourt L.A., Labuza T.P. (2007): Effect of Raffinose on Sucrose Recrystallization and Textural Changes in Soft Cookies. J. Food Sci,, 72 (1), C65-C71.
  • 4. Bhandari B.R., Howes T. (1999): Implication of glass transition for the drying and stability of dried foods. J. Food Eng., 40, 1-2, 71-79.
  • 5. Bhandari, B. R., Datta, N., Crooks, R., Howes, T., Rigby, S.(1997): A semi-empirical approach to optimise the quantity required to spray dry sugar-rich foods. Drying Technol., 15(10), 2509-2525.
  • 6. Cardona S., Schebor C., Buera M.P., Karel M., Chirife J. (1997): Thermal stability of invertase in reduced-moisture amorphous matrice in relation to glassy state and trehalose crystallization. J. Food Sci., 62, 105 - 12.
  • 7. Champion D., Le Meste M., Simatos D. (2000): Towards an improved understanding of glass transition and relaxations in foods: molecular mobility in the glass transition range. Trends Food Sci. Technol,, 11, 41 - 55.
  • 8. Chan R.K., Pathmanathan K., Johari G.P. (1986): Dielectric relaxations in the liquid and glassy states of glucose and its water mixtures. J. Phys. Chem., 90, 6358 - 6362.
  • 9. Chen Y-H., Aull J.L., Bell L.N. (1999): Solid-state tyrosinase stability as affected by water activity and glass transition. Food Res. Int., 32, 467 - 472.
  • 10. Chirife J., Buera M.P. (1995): A critical review of some non-equilibrium situations and glass transitions na water activity values of foods in the microbiological growth range. J. Food Eng., 25, 531 - 552.
  • 11. Chirife J., Buera M.P., Gonzalez H.L. (1999): The mobility and mold growth in glassy/rubbery substances. Water Management in the Design and Distribution of Quality Foods. ISPOW 7 (eds. Y.H. Roos, R.B. Lesile, P.J. Lillford), Technomic Publishing Co., Inc., Lancaster, 285 - 298.
  • 12. Cocero A.M., Kokini J.L. (1991): The study of the glass transition of glutenin using small amplitude oscillatory rheological measurements and differential scanning calorimetry. J. Rheol., 35, 257 - 270.
  • 13. de Graff E.M., Madeka H., Cocero A.M., Kokini J.L. (1993): Determination of the effect of moisture on gliadin glass transition using mechanical spectroscopy and differential scanning calorimetry. Biotechnol. Prog., 9, 210 -213.
  • 14. Ferry J.D. (1980): Viscoelastic properties of polymers. John Wiley and Sons, New York.
  • 15. Goff H.D. (1995): The use of thermal analysis in the development of a better understanding of frozen food stability. Pure Appl. Chem., 67, 1801 - 1808.
  • 16. Gordon M., Taylor J.S. (1952): Ideal copolymers and the second-order transitions of synthetic rubbers. I. Non-crystalline copolymers. J. Appl. Chem., 2, 493 - 500.
  • 17. Hallbrucker A., Mayer E., Johari G.P. (1989): Glass-liquid transition and the enthalpy of devitrification of annealed vapor-deposited amorphous solid water. A comparison with hyperquenched glassy water. J. Phys. Chem., 93, 4986 - 4990.
  • 18. Hemminga M.A., Roozen M.J.G.W., Walstra P. (1993): Molecular motions and the glassy state. In: The Glassy State in Foods, Chpt. 7 (eds. J.M.V. Blanshard and P.J. Lillford), Nottingham University Press, Loughborough, 157 - 171.
  • 19. Johari G.P., Hallbrucker A., Mayer E. (1987): The glass-liquid transition of hyperquenched water. Nature, 330, 552 - 553.
  • 20. Jouppila K., Roos Y.H. (1994): Glass transition and crystallization in milk powders. J. Dairy Sci., 77, 2907 - 2915.
  • 21. Kalichevsky M.T., Blanshard J.M.V., Marsh R.D.L. (1993): Applications of mechanical spectroscopy to the study of glassy biopolymers and related systems. In: The Glassy State in Foods, Chpt. 6 (eds. J.M.V. Blanshard and P.J. Lillford), Nottingham University Press, Loughborough, 133 - 156.
  • 22. Kalichevsky M.T., Jaroszkiewicz E.M., Ablett S., Blanshard J.M.V., Lillford P.J. (1992): The glass transition of amylopectin measured by DSC, DMTA and NMR. Carbohydr. Polym., 18, 77 -88.
  • 23. Karathanos V., Angela S., Karel M. (1993): Collapse of structure during drying of celery. Drying Technology, 11 (5), 1005-1023.
  • 24. Karmas R., Buera M.P., Karel M. (21992): Effect of glass transition on ratek of nonenzymatic browning in food systems. J. Agric. Food. Chem. .40 (5), 873-879.
  • 25. Kasapis S., Sablani S.S. (2005): A fundamental approach for the estimation of the mechanical glass transition temperature in gelatin. Int J Biol Macromol , 36, 71 - 78.
  • 26. Kokini J.L., Cocero A.M., Madeka H., de GraafE E. (1994): The development of state diagrams for cereal proteins. Trends Food Sci. Technol., 5, 281 - 288.
  • 27. LabuzaT., Roe K., Payne C., Panda F., Labuza T.J., Labuza P.S.,Krusch L. (2004): Storage stability of dry food systems: Influence of State Changes during Drying and Storage. In: Silva, M., Rocha, S. (Eds.), Drying 2004-Proceeding of the 14th International Drying Symposium (IDS 2004). Sao Paulo, Brazil, vol. A, pp. 48-68, http://www.feq.unicamp.br/~ids2004/
  • 28. Le Meste M. (1995): Mobility of small molecules in low and intermediate moisture foods. In: Food Preservation by Moisture Control (eds. G.V. Barbosa-Canovas and J. Welti-Chanes), Technomic, Lancaster, PA, 209 - 225.
  • 29. Le Meste M., Huang V.T., Panama J., Anderson G., Lentz R. (1992): Glass transition of bread. Cereal Foods World, 37, 264 - 267.
  • 30. Le Meste M., Voilley A., Colas B. (1991): Influence of water on the mobility of small molecules dispersed in a polymeric system. In: Water Relations in Foods (eds. H. Levine, L. Slade), Plenum Press. New York, 123 - 138.
  • 31. Leinen K.M., Labuza T.P. (2006): Crystallization inhibition of an amorphous sucrose.
  • 32. Levi G., Karel M.(1995): Volumetric shrinkage (collapse) in freeze-dried carbohydrates above their glass transition temperature, Food Res. Int., 28, 2, 145-151.
  • 33. Levine H., Slade L. (1986): A polimer physico-chemical approach to the study of commercial starch hydrolisis products (SHP's). Carbohydr. Polym., 6, 213-244.
  • 34. Levine H., Slade L. (1988): "Collapse" phenomena - a unifying cocept for interpreting the brhaviur of low moisture foods, In: Food Structure - Its Creation and Evaluation, Chpt. 9 (eds. J.M.V. Blanshard and J.R. Mitchell), Butterworths, London, 149 - 180.
  • 35. Lim M.H., Reid D.S. (1991): Studies of reaction kinetics in relation to the Tg' of polymers in frozen model systems. In: Water Relations in Foods (eds. H. Levine, L. Slade), Plenum Press. New York, 103 - 122.
  • 36. Lorentzen J. (1980): Nowe kierunki rozwoju liofilizacji. W Nowe metody zagęszczania i suszenia żywności, materiały z sympozjum zorganizowanego przez IUFoST, red. Spicer A. WNT ,408-427.
  • 37. Luyet B., Rasmussen D. (1968): Study by differential thermal analysis of the temperatures of instability of rapidly cooled solutions of glycerol, ethylene glycol, sucrose and glucose. Biodynamica, 10(211), 167 - 191.
  • 38. Maltini E., Torreggiani D., Venir E., Bertolo G. (2003): Water activity and the preservation of plant foods. Food Chem., 82(1), 79 - 86.
  • 39. Mazzobre M.F., Buera M.P., Chirife J. (1997): Protective role of trehalose on thermal stability of lactase in relation to its glass and crystal forming properties and effect of delaying crystallization. Lebensm. -Wiss. u. -Technol., 30, 324 - 329.
  • 40. Noel T.R., Ring S.G., Whittam M.A. (1992): Dielectric relaxations of small carbohydrate molecules in the liquid and glassy states. J. Phys. Chem., 96, 5662 - 5667.
  • 41. Peleg M. (1983): Physical characteristics of food powders. W Physical Properties of Foods, ed. M. Peleg and B. Bagley. AVI Publishing, Westport, CT, 293-323.
  • 42. Rahman M. S. (2006): State diagram of foods: Its potential use in food processing and product stability. Trends Food Sci. Technol., 17 (3), 129-141.
  • 43. Roe, K., Labuza, T.P., 2006. Transition and crystallization of amorphous trehalose-sucrose mixtures. J. Food Properties, 9,1-18.
  • 44. Roos Y. (1993a): Melting and glass transition of low molecular weight carbohydrates. Carbohydr. Res., 238, 39 - 48.
  • 45. Roos Y. (1993b): Water activity and physical state effects on amorphous food stability. J. Food Process Preserv., 16, 433 - 447.
  • 46. Roos Y. (1995): Characterization of food polymers using state diagrams. J. Food Eng., 24(3), 339 - 360.
  • 47. Roos Y., Karel M. (1991a): Applying state diagrams to food processing and development. Food Technol., 45(12), 66, 68-71, 107.
  • 48. Roos Y., Karel M. (1991b): Water and molecular weight effects on glass transitions in amorphous carbohydrates and carbohydrate solutions. J. Food Sci., 56, 1676 - 1681.
  • 49. Roos Y., Karel M. (1991c): Phase transition of mixtures of amorphous polysaccharides and sugars. Biotechnol. Prog., 7, 49 - 53.
  • 50. Roos Y., Karel M. (1991d): Amorphous state and delayed ice formation in sucrose solutions. Int. J. Food Sci. Technol., 26, 553 - 566.
  • 51. Roos Y., Karel M. (1992):Crystallization of Amorphous Lactose. J. Food Sci., 57, 3, 775-777.
  • 52. Roos Y.H. (1987): Effect of moisture on the thermal behavior of strawberries studied using differential scanning calorimetry. J. Food Sci., 52, 146 - 149.
  • 53. Roos Y.H., Karel M., Kokini J.L. (1996): Glass transitions in low moisture and frozen foods: effects on shelf life and quality. Food Technol., 50(11), 95 - 108.
  • 54. Schebor C., Buera M.P., Chirife J. (1996): Glassy state in relation to the thermal inactivation of the enzyme invertase in amorphous dried matrices of trehalose, maltodextrin and PVP'. J. Food Eng., 30, 269 - 282.
  • 55. Scott W.J. (1953): Water relations of Staphylococcus aureus at 30oC. Australian J. Biology Sci., 6, 549 - 564.
  • 56. Scott W.J. (1957): Water relations of food spoilage microorganisms. Adv. Food Res., 7, 83 - 124.
  • 57. Simatos D., Blond G.(1993): Some aspects of the glass transition in frozen foods systems. In: The Glassy State in Foods, Chpt. 19 (eds. J.M.V. Blanshard and P.J. Lillford), Nottingham University Press, Loughborough, 395 - 415.
  • 58. Simatos D., Faure M., Bonjour E., Couach M. (1975): The physical state of water at low temperatures in plasma with different water contents as studied by differential thermal analysis and differential scanning calorimetry. Cryobiology, 12, 202 - 208.
  • 59. Slade L., Levine H. (1987): Structural stability of intermediate moisture foods - a new understanding. In: Food Structure - Its Creation and Evaluation (eds. J.R. Mitchell and J.M.V. Blanshard), Butterworths, London, 115 - 136.
  • 60. Slade L., Levine H. (1991): Beyond water activity: recent advances based on an alternative approach to the assessment of food quality and safety. Crit Rev Food Sci Nutr., 30 (2-3), 115 - 360.
  • 61. Leinen K.M., Labuza TT.P. (2007): Crystallization inhibition of an amorphous sucrose system using raffinose. Journal of Zhejiang University SCIENCE B, 7 (2), 85-89.
  • 62. White G.W., Cakebread S.H. (1966): The glassy state in certain sugar-containing food products. J. Food Technol., 1, 73 - 82.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD1-0013-0017
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.