PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Procesy wysokotemperaturowe w węgliku krzemu

Identyfikatory
Warianty tytułu
EN
High-temperature processes in silicon carbide
Języki publikacji
PL
Abstrakty
PL
Artykuł ten porusza problem wykorzystania węglika krzemu w nowoczesnej mikroelektronice. Materiał ten posiada szereg fizycznych parametrów predysponujących go do wytwarzania nowoczesnych przyrządów półprzewodnikowych mocy, mogących ze względu na szeroką przerwę energetyczną SiC pracować w wysokich temperaturach. Duża wartość krytycznego natężenia pola przebicia pozwala na wykonywanie złącz wysokonapięciowych o napięciach przebicia przekraczających 10 kV. Prace prowadzone w Zakładzie Przyrządów Półprzewodnikowych nad węglikiem krzemu mają na celu opracowanie technologii wytwarzania złącz metodą dyfuzji termicznej.
EN
The primary goal of the paper is to present advantages of silicon carbide as a new material in modern microelectronics. Due to its unique physical parameters silicon carbide is suitable to produce semiconductor power devices working in high temperatures because of wide bandgap. The high permissible electrical field allows making high breakdown voltage junctions up to 10kV. The investigations run in Semiconductor Devices Division concern thermal diffusion technology in silicon carbide.
Rocznik
Tom
Strony
23--34
Opis fizyczny
Bibliogr. 45 poz.
Twórcy
  • Institute of Electronics, Technical University of Łódź, 223 Wólczańska, 90-924 Łódź tel. +4842 6312681
autor
  • Institute of Electronics, Technical University of Łódź, 223 Wólczańska, 90-924 Łódź tel. +4842 6312681
autor
  • Institute of Electronics, Technical University of Łódź, 223 Wólczańska, 90-924 Łódź tel. +4842 6312681
Bibliografia
  • [1] J. Palmur, R. Singh, R. Glass, O. Kordina, C. Carter, Silicon Carbide for power devices, ISPSD'97, Weimar 25-32 (1997)
  • [2] Ch. Weitzel, J. Palmour, C. Carter, K. Moore, K. Nordquist, S. Allen, Ch. Thero, M. Bhatnagar, Silicon Carbide High-Power Devices, IEEE Transactions on Electron Devices 43 (10), 1732-1738 (1996)
  • [3] M. Bhatnagar, B. Baliga, Comparison of 6H-SiC, 3C-SiC and Si for Power Devices, IEEE Transactions on Electron Devices 40 (3), 645-655 (1993)
  • [4] M. Iwami, Silicon Carbide: Fundamentals, Nuclear Instruments and Methods in Physics Research A466, 406-411 (2001)
  • [5] F. Bechstedt, P. Kackell, A. Zywietz, K. Karch, B. Adolph, K. Tenelsen, J. Furthmuller, Polytipism and Properties of Silicon Carbide, A Review of Fundamental Questions and Applications to Current Device Technology vol. 1, 35-61, Akademie Verlag, Berlin 1997
  • [6] Yu. M Tairov, Growth of bulk SiC, Materials Science and Engineering B 29, 83-89(1995)
  • [7] R. Yakimova, E. Janzén, Current status and advances in the growth of SiC, Diamond and Related Materials 9,432-438 (2000)
  • [8] St. Muller, R. Glass, H. Hobgood, V. Tsvetkov, M. Brady, D. Henshall, J. Jenny, D. Malta, C. Carter Jr., The status of SiC bulk growth from an industrial point of view, Journal of Crystal Growth 211, 325-332 (2000)
  • [9] R. Yakimova, M. Syväjarvi, T. Iakimov, H. Jacobsson, A. Kakanakova-Georgieva, P. Râback, et. al., Growth of silicon carbide: process-related defects, Applied Surface Science 184, 27-36 (2001)
  • [10] G. Foti, Silicon carbide: from amorphous to crystalline material, Applied Surface Science 184, 20-26 (2001)
  • [11] W. Haeringen, P. Bobbert, W. Backes, On the Band Gap Variation in SiC Polytypes, Physica Status Solidi 202, 63-79 (1997)
  • [12] C. Park, Ch. Byoung-Ho, L. Keun-Ho, K. Chang, Structural and electronic properties of cubic, 2H, 4H, and 6H SiC, Physical Review, 49 (7), 4485-4493 (1994)
  • [13] H. Nienhaus, T. Kampen, W. Mönch, Phonons in 3C-, 4H-, and 6H-SiC, Surface Science 324,1328-1332 (1995)
  • [14] A. Syrkin, J. Bluet, G. Bastide, T. Bretagnon, A. Lebedev, M. Rastegaeva, N. Savkina, Surface barrier height in metal-SiC structures of 6H, 4H and 3C polytypes, Materials Science and Engineering: B 46, 236-239 (1997)
  • [15] A. Fissel, Thermodynamic considerations of the epitaxial growth of SiC polytypes, Journal of Crystal Growth 212, 438-450 (2000)
  • [16] G. Gao, J. Sterner, H. Moroc, High Frequency Performance of SiC Heterojunction Bipolar Transistor, IEEE Transactions on Electron Devices 41 (7), 1092-1097(1994)
  • [17] A. Itoh, T. Kimono, T. Matsunami, High performance high-voltage 4H-SiC Schottky barrier diodes, IEEE Electron Dev. Lett. 16 (6), 280-282 (1995)
  • [18] M. Badila, B. Tudor, G. Brezeanu, M. Locatelli, J. Chante, J. Milian, P. Godignon, Current-voltage characteristics of large area 6H-SiCpin diodes, Materials Science and Engineering (61-62), 433 - 436 (1999)
  • [19] N. Pan, J. Cooper, M. Melloch, Self aligned, 6H-SiC MOSFETs with improved current drive, Electron. Lett. 31 (14), 1200 (1995)
  • [20] M. Levinshtein, J. Palmour, S. Rumyanetsev, R. Sing, Turn-on process in 4H-SiC thyristors, IEEE Trans. Electron Devices 44 (7), 1177-1179 (1997)
  • [21] First SiC Schottky diode power semiconductors, III-V's Review 14 (2), p. 10 (2001)
  • [22] First products from Crée-Microsemi SiC alliance, III-Vs Review 14 (9), p. 15 (2001)
  • [23] C. Carter, Jr., V. Tsvetkov, R. Glass, D. Henshall, M. Brady, S. Müller, Progress in SiC: from material growth to commercial device development, Materials Science and Engineering 61-62, 1-8 (1999)
  • [24] K. M. Zetterling, Silicon Dioxide and Aluminium Nitride as Gate Dielectric for High Temperature and High Power Silicon Carbide MOSFET's, KTH, Royal Institute of Technology, Stockholm 1997
  • [25] C.I. Harris, S. Savage, A. Konstantinov, M. Bakowski, P. Ericsson, Progress towards SiC products, Applied Surface Science 184, 393-398 (2001)
  • [26] K. Rottner, M. Frischholz, T. Myrtveit, D. Mou, K. Nordgren, A. Henry, C. Hallin, U. Gustafsson, SiC power devices for high voltage applications, Materials Science and Engineering 61-62, 330-338 (1999)
  • [27] P. Chalker, Wide band semiconductor materials for high temperature electronics, Thin Solid Films 343-344, 616-622 (1999)
  • [28] J. Edmond, H. Kong, A Suvovrov, D. Waltz, C. Carter, 6H-Silicon Carbide Light Emitting Diodes and UV Photodiodes, Physica Status Solidi 162, 481-491 (1997)
  • [29] A. Lloyd, A. Baranzahi, P. Tobias, I. Lundstrom, High Temperature Sensors Based on Metal-lnsulator-Silicon Carbide Devices, Physica Status Solidi 162, 493-511 (1997)
  • [30] A. Agarwal, S. Seshadri, M. MacMillan, S. Mani, J. Casady, P. Sanger, P. Shah, 4H-SÏC p-n diodes and gate turnoff thyhstors for high power, high-temperature applications, Solid-State Electronics 44, 303-308 (2000)
  • [31] F. Schwierz, M. Kittler, H. Forster, D. Schipanski, The potential of SiC and GaN for application in high speed devices, Diamond and Related Materials 6, 1512-1514(1997)
  • [32] A. Agarwal, S. Seshardi, J. Casady, S. Mani, M. MacMillan, N. Saks, A. Burk, G. Augustine, V. Balakrishna, P. Sanger, C. Brandt, R. Rodrigues, Status of SiC power devices at Northrop Grumman, Diamond and Related Materials 8, 295-301 (1999)
  • [33] T. Troffer, M. Schadt, T. Frank, H. Itoh, G. Pensl, J. Heindl, H. Strunk, M. Maier, Doping of SiC by implantation of Boron and Aluminum, A Review of Fundamental Questions and Applications to Current Device Technology vol. 2, 277-297, Akademie Verlag, Berlin 1997
  • [34] D. Peters, R. Schorner, K.H.Holzlein, P.Frierichs, Planar aluminium-implanted 1400V 4H silicon carbide p-n diodes with low on-resistance, Applied Physics Lettters 71 (20), 2996-7 (1997)
  • [35] M. Lam, K. Kornegay, J. Cooper, M. Melloch, Planar 6H-SiC MESFET's with Vanadium Implanted Termination, IEEE Transactions on Electron Devices 44 (5), 907-910 (1997)
  • [36] D. Alok, B. Baliga, SiC Device Edge Termination Using Finite Area Argon Implantation, IEEE Transactions on Electron Devices 44 (6), 1013-1017 (1997)
  • [37] J. Grisolia, B. de Mauduit, J. Gimbert, Th. Bilion, G. Ben Assayag, C. Bourgerette, A. Claverie, TEM studies of the defects introduced by ion implantation in SiC Nuclear Instruments and Methods in Physics Research B 147,62-67(1999)
  • [38] H. Matsunami, T Kimoto, Surface polarity dependence in step-controlled epitaxy: Progress in SiC epitaxy, Diamond and Related Materials 6(10), 1276-1281 (1997)
  • [39] R. Yakimova, E. Janzén, Current status and advances in the growth of SiC, Diamond and Related Materials Volume: 9 (3-6), 432-438 (2000)
  • [40] G. Sun, J. Li, M. Luo, S. Zhu, L. Wang, F. Zhang, L. Lin, Epitaxial growth of SiC on complex substrates, Journal of Crystal Growth 227-228, 811-815 (2001)
  • [41] N.T. Bagrayev, L.E. Klyachkin,V.L. Sukhanov, Low temperature impurity diffusion in SiC: planar quantum-size p-n junctions and n-p-n transistors structures, Solid State Electronics 36 (12), 1741-47 (1993)
  • [42] S. Soloviev, Y. Gao, X. Wang, T.S Sudarshan, Boron diffusion into 6H-SiC through graphite mask, Journal of Electronic Materials 30 (3), 224-7 (2001)
  • [43] S. Soloviev, Y. Gao, T.S. Sudarshan, Doping of6H-SiC by selective diffusion of boron, Applied Physics Letters 77 (24), 4004-4006 (2000)
  • [44] S. Soloviev, Y. Gao, T.S. Sudarshan, Planar 4H- and 6H-SiCp-n diodes fabricated by selective diffusion of boron, Solid State Electronics 45, 1987-1990(2001)
  • [45] Tairov, Yu.M., V.F. Tsvetkov, in Handbook on Electrotechnical Materials Eds. Koritskii, Yu.V., V.V. Pasynkov, B.M. Tareev, Vol.3, Sec. 19, "Semiconductor Compounds AIV BIV", Energomashizdat, Leningrad, (1988)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD1-0001-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.