PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of peak-aged heat treatment on corrosion behavior of the AA6063 alloy containing Al3Ti

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ obróbki cieplnej na korozje stopów AA6063 zawierajacych Al.3Ti
Języki publikacji
EN
Abstrakty
EN
The purpose of this study is to analyse the microstructure and corrosion properties of homogenised and aged AA 6063 aluminium alloys, containing up to 2% Ti, after the conventional casting technique. The microstructure of the homogenised and aged alloys was examined using an optic microscope, and scanning electron microscope. The micro-hardness test was used for the hardness measurements of the investigated alloys. Corrosion tests were performed by suspending samples of certain sizes into 30 gr/l NaCl + 10 ml/l HCl solutions, measuring the mass loss; potentiodynamic polarisation measurements were carried out in the same solution. The microstructure characterization of the investigated alloys shows the Al (matrix), non-shaped dark globular grey-coloured phase and rod-shaped phases formed at the grain boundaries. The non-shaped dark grey-coloured phase is Mg2Si. The rod-shaped phase, formed in the microstructure of the Ti-added AA 6063 alloys, is Al3Ti. The Ti content of the alloy increases, the Al3Ti phase tends to elongate and become plated. The results of the corrosion tests proved that the corrosion rate decreased in alloys containing less than 1% Ti, and the rate of corrosion increased in alloys containing more than 1% Ti, regardless of whether the alloys were homogenised and aged. Another observation was that aging heat treatment improved corrosion resistance.
PL
Celem niniejszej pracy jest analiza mikrostruktury i właściwości korozyjnych poddanych obróbce cieplnej stopów aluminium AA 6063, zawierających do 2% Ti, po odlewaniu konwencjonalnym. Mikrostrukturę homogenizowanych stopów zbadano za pomocą mikroskopii optycznej i skaningowej mikroskopii elektronowej. Test mikrotwardości zastosowano do pomiaru twardości badanych stopów. Badania korozyjne przeprowadzono poprzez zawieszenie próbki o określonych rozmiarach w roztworze 30 gr/l NaCl + 10 ml/l HCl i pomiar ubytku masy; pomiary potencjo-dynamicznej polaryzacji zostały przeprowadzone w tym samym roztworze. Charakterystyka mikrostruktury badanych stopów pokazuje matryce Al; ciemnoszare, nieregularne wydzielenia fazy Mg2Si; oraz na granicach ziaren pręcikowe wydzielenia fazy Al3Ti, obecne w mikrostrukturze stopów AA 6063 z dodatkiem Ti. Ze wzrostem zawartości Ti, wydzielenia fazy Al2Ti stają się wydłużone i płytkowe. Wyniki testów korozyjnych wykazały, że szybkość korozji spadła w stopach zawierających mniej niż 1% Ti, a wzrosła w stopach zawierających więcej niż 1% Ti, niezależnie od tego, czy stopy były homogenizowane i starzone. Zaobserwowano, że obróbka cieplna podwyższa odporność stopów na korozję.
Twórcy
autor
autor
autor
  • Karabuk University, Engineering Faculty, Metallurgical and Materials Engineering, 78050 Karabuk, Turkey
Bibliografia
  • [1] A. Meyveci, I. Karacan, U. Calıgulu, H. Durmus, Pin-on-disc characterization of 2xxx and 6xxx aluminium alloys aged by precipitation age hardening. Journal of Alloys and Compounds 491, 278-283 (2010).
  • [2] W. Weiwei, H. Jianmin, L. Weijing, W. Jinhua, Study of rare earth element effect on microstructures and mechanical properties of an Al-Cu-Mg-Si cast alloy. Rare Metals 25, 129-132 (2006).
  • [3] A. S. Anasyida, A. R. Daud, M. J. Ghazali, Dry sliding wear behaviour of Al-12Si-4Mg alloy with cerium addition. Materials and Design 31, 365 (2010).
  • [4] A. K. Bhattamishra, K. Lal, Microstructural studies on the effect of Si and Cr on the intergranular corrosion in Al-Mg-Si alloys, Materials Design 18, 25-28 (1997).
  • [5] T. Ramgopal, P. I. Gouma, G. S. Frankel, Role of grain boundary precipitates and SDZ on the intergranular corrosion of aluminum alloy AA7150. Corrosion Science Section 58, 687-697 (2002).
  • [6] P. Leblanc, G. S. Frankel, A study of corrosion and pitting initiation of AA2024-T3 using atomic force microscopy. Journal of Electrochemical Society 149, 239-247 (2002).
  • [7] W. Zhang, G. S. Frankel, Localized corrosion growth kinetics in AA2024 alloys. Journal of Electrochemical Society 149, 510-519 (2002).
  • [8] Y. Baek, G. S. Frankel, Electrochemical quartz crystal microbalance study of corrosion of phases in AA2024. Journal of Electrochemical Society 150, 1-9 (2002).
  • [9] W. Zhang, G. S. Frankel, Transitions between pitting and intergranular corrosion in AA2024. Electrochımıca Acta 48, 1193-1210 (2003).
  • [10] Q. Meng, G. S. Frankel, Effect of Cu content on corrosion behavior of 7xxx series aluminum alloys. Journal of Electrochemical Society 151, 271-283 (2004).
  • [11] N. Birbilis, R. G. Buchheit, Corrosion damage accumulation on high strength aluminum alloys: Some advances in understanding the role of intermetallics. Corrosion and Materials 29, 4-10 (2004).
  • [12] N. Birbilis, R. G. Buchheit, Electrochemical characteristic of intermetallic phases in Al alloys. Journal of Electrochemical Society 152, 140-151 (2004).
  • [13] H. Santos, F. Reis, C. Kunioshi, J. Rossi, I. Costa, Corrosion performance of Al-Si-Cu hypereutectic alloys in a synthetic condensed automotive solution. Materials Research 8, 155-159 (2005).
  • [14] G. Svenningsen, M. G. Larsen, J. C. Walmsley, J. H. Nordlien, K. Nisancıoglu, Effect of artifical aging on intergranular corrosion of extruded AlMgSi alloy with small Cu content. Corrosion Science 48, 1528-1543 (2006).
  • [15] T. Huang, G. S. Frankel, Influence of grain structure on anisotropic localised corrosion kinetics of AA7xxx-T6 alloys. Corrosion Engineering Science and Technology 41, 192-199 (2006).
  • [16] L. A. Dobrzanski, K. Labisz, A. Olsen, Microstructure and mechanical properties of the Al-Ti alloy with calcium addition. Journal of Achievements in Materials and Manufacturing Engineering 26, 183-188 (2008).
  • [17] M. Gavgali, Y. Totik, R. Sadeler, The effect of artificial aging on wear properties of AA 6063 alloy. Materials Letters 57, 3713-3721 (2003).
  • [18] H. Ahlatci, A. Durmaz, A. Balta, M. Acarer, E. Candan, Effect of Ti on the corrosion behaviour of in-situ Mg2Si particle reinforced Al-12Si-20Mg-XTi alloys. Materials Science Forum 636, 511-516 (2010).
  • [19] N. Saheb, T. Laoui, A.R. Dauda, M. Harun, S. Radimana, R. Yahaya, Influence of Ti addition addition on wear properties of Al–Si eutectic alloys. Wear 249, 656-662 (2001).
  • [20] K. Das, L. K. Narnaware, A study of microstructure and tribological behaviour of Al-4.5% Cu /Al3Ti Composites. Materials Characterization 60, 808-816 (2009).
  • [21] R. A. Siddiqui, H. A. Abdullah, Influence of aging parameters on the mechanical properties of 6063 aluminium alloy. Journal of Materials Processing Technology 102, 234-240 (2000).
  • [22] M. Gavgali, Y. Totik, R. Sadeler, I. Kaymaz, Improvements of fatigue behavior in 2014 Al alloy by solution heat treating and age-hardening. Wear 236, 144-152 (2004).
  • [23] H. Kacar, E. Atik, C. Meric, The effect of precipitation-hardening conditions on wear behaviors at 2024 aluminium wrought alloy. Wear 236, 144-152 (2003).
  • [24] D. G. Altenpohl, Aluminum technology, applications and environment a profile of a modern metal. 6th ed. TMS (1998).
  • [25] K. D. Ralston, S. Chrisanti, T. L. Young, R. G. Buchheita, Corrosion inhibition of aluminum alloy 2024-T3 by aqueous vanadium species. Journal of The Electrochemical Society 155, 350-359 (2008).
  • [26] M. Cavanaugh, N. Birbilis, R. G. Buchheit, F. Bovard, Investigating localized corrosion susceptibility arising from Sc containing intermetallic Al3Sc in high strength Al-alloys. Scripta Materialia 56, 995-998 (2007).
  • [27] N. Birbilis, R. G. Buchheit, An experimental survey of electrochemical characteristics for intermetallic phases in aluminum alloys. Journal of the Electrochemical Society 152, 140-146 (2005).
  • [28] M. Anik, P. Avci, A. Tanriverdi, ˙I. Celikyurek, B. Baksan, R. Gurler, Effect of the eutectic phase mixture on the anodic behavior of alloy AZ91. Mater. Design 27, 347-355 (2006).
  • [29] G. Kiourtsidis, S. M. Stolianos, Corrosion behaviour of squeze-cast silicon carbide -2024 composites in aerated 3.5% sodium chloride. Mater. Sci. Eng. A 248, 165-172 (1998).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWMA-0025-0009
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.