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        The aim of this paper is to compare the results of the mathematical modeling and 
experimental results of the ultrasonic waves scattering in the inhomogeneous dissipative 
medium. The research was carried out for an artery model (a pipe made of a latex), with 
internal diameter of 3, 5 and 8 mm and wall thickness of 0.75, 1.25 and 2 mm. The numerical 
solver was created for calculation of the fields of ultrasonic beams and scattered fields under 
different boundary conditions, different angles and transversal displacement of ultrasonic 
beams with respect to the position of the arterial wall. The investigations employed the VED 
ultrasonic apparatus. The frequency of the transmitted ultrasound was 6.75 MHz. The good 
agreement between the numerical calculation and experimental results was obtained. The 
numerical solver is used for verified proposed methods for determining of the IMT in the  
artery walls. 
 

INTRODUCTION 
 
        The pathological process of atherosclerosis development and its connection with 
alterations that occur in walls of blood vessels present a matter of interest for numerous 
scientificfic and clinical centers worldwide. In case of non-invasive investigations, the 
ultrasonic measurements for momentary diameters of arteries over the entire cardiac cycle 
serve as the basis enabling to determine elasticity of arterial walls.  Maximum and minimum 
values for the vessel diameter are associated with respective systolic and diastolic blood 
pressures measured by a sphygmomanometer. Based on the above measurements, the 
elasticity factors of the arterial wall are determined [1,2]. In case of non-invasive ultrasonic 
measurement, reproducibility of the obtained results is an extremely important parameter, 
since it is used to define sensitivity of the diagnostic tool [3]. The major objective of the thesis 
was to develop a mathematical model that would be capable of describing spatial and time-



dependent distribution of an ultrasonic beam that is emitted by a piezoelectric ring transducer 
and then scattered on cylindrical surfaces of the walls in artery models. The developed model 
was tested for results of experiments when an elastic pipe was immersed in water. The 
investigations were carried out using the VED equipment, designed and constructed in the 
Ultrasonic Department of the Institute of Fundamental Technological Research of the Polish 
Academy of Sciences, purposefully dedicated for elasticity examination of arterial walls in 
human body.  
 

1. PHYSICAL MODEL 

1.1 BASIC EQUATIONS 

With use of non-dimensional variables, the equation that defines the propagation of sonic 
waves in a homogenous (with undisturbed parameters of the material) non-linear  and 
absorbing medium, can be expressed by the following equation [4]:  
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where:  is the pressure in the 3D coordinate system at the moment of time t;  is a 
convolution-type operator that defines absorption; q is the Mach number (in our case the 
Mach number is calculated for velocities on the surface of the disturbance); 
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1.2 EQUATION FOR NON-HOMOGENOUS MEDIUM 

For a medium, where areas with disturbed parameters of the wave-carrying material occur 
(e.g. with values that differ from the ones for the entire wave propagation area or due to 
“inclusion” of admixtures with such material properties that are different than the ones for the 
surrounding medium), the equation (1) can be expressed in the following manner: 
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where: cccr )()( 1 xx ≡ , gggr 1≡ , βββ 1≡r )1()1( 1 ++= γγ . Respectively, ,  and 1c 1g 1γ  stand 
for sound velocity, density and “adiabatic exponent” within the disturbed area. In our case, 

 denotes the non-dimensional sound velocity in the surrounding reference medium, e.g. in 
water. The (Eq.2) neglects perturbations 

1=c
AAA −≡ 1δ = [ ])()(F 1

-1 nana −  as the algorithms that 
was developed by us makes it possible to achieve uniform solutions (in terms of absorption) 
of the model equations for all possible values of absorption and spatial configuration of 
absorbing constituents that have any importance for us. The Π  and Γ  factors may be defined 
as scattering potentials: linear  and non-linear Π Γ . 



 
1.3 DERIVATION OF MODEL EQUATIONS FOR THE ISSUES OF BACKSCATTERING 

For derivation of defining equations for our model we made the following assumptions:  
1)    The term that is proportional to Γ  describes the phenomenon of non-linear backscattering 
and non-linear propagation in the areas where medium parameters are disturbed. For cases 
that are important for our considerations the following relationship is fulfilled:  
 
                                                              1<<ΠΓq                                                             (Eq.3)    
Therefore the last term in (Eq.2) can be neglected. The attention should be paid to the fact that 
coincidence of 1)( ≅xrc  and , i.e. practical absence of linear reflection cannot be 
excluded, especially for biological substances. Mutual relationships between phenomena of 
non-linear and linear reflections are discussed in [5] and [6].  
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2)    Generation of scanning pulses and detection of the responding backscattered field (echo) 
is a typical approach in ultrasonic diagnostic techniques. Consequently, the following 
distribution of the acoustic field can be applied: 
 

                                                           scin PPP +=                                                    (Eq.4) 

             
where: inP  corresponds to the incident (scanning) field whilst scP  stands for the backscattered 
field. The assumption is made that inP  fulfils of the (Eq.1).  
3)    Substitution of (4) into (2) leads to the terms that depend on scin PP ⋅ , therefore determine 
non-linear “cross” effects, connected with mutual intersection and interference of the incident 
field inP  with the backscattered field scP  either in the area with non-disturbed parameters (the 
last component on the left-hand side in (Eq.2)) or, analogically, in the boundary area and in 
the area of disturbed parameters (the last component on the right-hand side in (Eq.2)). If 
scanning pulses are short, the contribution of cross-section phenomena into overall 
propagation-related non-linear phenomena can be omitted as duration of the time interval 
when a non-zero value of the product scin PP ⋅  exists is negligibly short as compared to the 
lifetime of the 2inP  field. Cumulating of non-linear effects is a characteristic feature of the 
phenomena described by the (Eq.1), e.g. increasing deformation of pulses waveforms leads to 
extension of the Fourier spectrum. Consequently the conclusion can be made that in case of 
very short time intervals for interactions or propagation, the non-linear phenomena can be 
also omitted. Last but not least, in spite of all the foregoing deliberations, the assumption can 
be made that a subsequent scanning pulse is emitted only is the response (echo) of the 
preceding one has been received.  
For all the cases that have any importance for our deliberations the assumption can be made: 
                                                                                                                   (Eq.5) 0=⋅ scin PP
        
For insignificant differences of material parameters for the surrounding medium and the 
target, pressure in the backscattered field is much lower than the pressure of incident pulses 

insc PP << . Hence the assumption that non-linear phenomena can be neglected for propagation 
of backscattered fields is absolutely justified. It must be mentioned that even those the probes 
that are used for ultrasonography and specified as broadband are actually of the narrow-band 
type, as compared to the requirements related to non-linear propagation of scanning ad 



backscattered pulses. Notwithstanding the fact that propagation of backscattered signal can be 
really non-linear, no phenomenon related to such non-linear propagation is detected. 
Therefore we can assume that in the (Eq.2) 
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After having taken into account the foregoing assumptions from the (Eq.2), the following 
formula can be obtained to define backscattered fields.  
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The only non-linear equation is the one numbered as (8) and it determines propagation of 
scanning pulses. However, if the excitation level is low, still that equation can be linearized as 
well by omitting the last component. Equations (Eq.7) and (Eq.8) represent our mathematical 
model for physical phenomena that take place in the areas of propagation and scattering of 
ultrasonic signals.  
 

2. SOLVER 
 
Construction of a solver for scattered fields is the fundamental issue for setting up a numerical 
model of an experiment that is aimed to reflect real situations that occur in ultrasonography 
practice. The solver that we constructed for our own needs is composed of three parts: 
1)Solver for the incident field. It is the solver that bases on codes JWNUT2D and JWNUT3D, 
which we have been using for many years. The first code solves the (Eq.8) in the axially 
symmetrical cases, the second one is applicable to whichever one-sided boundary conditions 
(see [7]); 2)Solver for the scattered field. It is the tool that is able to calculate parameters of 
backs-scattered fields and their pressures on the detector surface, whereas the tool uses 
numerically determined incident field and information on geometrical and material 
parameters of the target as the basis for calculations; 3)Simulator of electronic tracks that is 
used for calculation of pulse responds  to electronic tracks. Distribution of pressure on the 
surface of the probe is averaged over the entire head surface (the theory of piezoelectric 
phenomena says that electric signals at head output are proportional to the aforementioned 
average value). 
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where  denotes a point on the transducer surface, S stands for the transducer surface area  
and  is the apodization function for the transducer surface. In this study  is 
referred to as the echo. The RF signal  represents a single line of scanning and is 
calculated as follows: 
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3. RESULTS 
 

Experimental setup is shown on Figure 1. The research was carried out for a pipe made of 
latex, with internal diameter of 5 mm and wall thickness of 1.25 mm. The ultrasonic beam 
was focused in water medium, at the depth of 23 mm from the transducer surface. Transducer 
diameter was 6 mm. The investigations employed the VED ultrasonic apparatus. The 
frequency of the transmitted ultrasound was 6.75 MHz. The pulses were measured by means 
of the hydrophone of the type: Sonic Technologies Model 800 Bilaminar Hydrophone. During 
the performed research the front surface of the pipe wall was positioned in the focus of the 
ultrasonic probe. The RF electric signal, , corresponding to echoes reflected by the pipe 
walls, was recorded at the output of the RF receiver by means of the digital oscilloscope 
AGILENT 54641D. To highlight relationships between target (pipe) dimensions and 
wavelength of the echoed signals (both acoustic waves and corresponding electric 
waveforms) the scales were converted all the time into 3D ones and expressed in millimeters. 
Spatial size of the measurement “window” was 30 mm. Signal amplitudes were presented as 
relative values. Results for calculations and measurements are presented in Figures 2 - 7.  
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Fig.1 Experimental setup 
 



 
 

      

b) a) 

 
Fig.2 The assumed normalized mechanical stimulation (a); the measured normalized mechanical 

stimulation (b), Ar =P/P0– the relative pressure, P0 = 0.25 MPa 
 
 

 

             

a) b) 

 
Fig.3 The normalized scanning pulse in the focus (a) calculated from the numerical model by means of  
the  formula  (8); the normalized scanning pulse measured in the focus (b).  Ar - the relative pressure 

 
 
 
 

        

b) a) 

 
Fig.4 a) the normalized spectrum of the assumed mechanical stimulation (thick line) and the 

normalized spectrum of the calculated scanning pulse in the focus (thin line); b) the normalized 
spectrum of the measured mechanical stimulation (thick line) and the normalized spectrum of the 

measured scanning pulse in the focus (thin line), Ar –the relative amplitude 
 
 
 
 



 

b) a) 

 
Fig.5 a) The RF signal calculated from the numerical model by means of the formula 2; b) the 

expanded RF signal, from the first pipe wall. Ar - the relative amplitude (with respect to the maximum 
value of the RF signal amplitude) 
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b) a) 

 
Fig.6  a) The RF signal measured by means of the VED apparatus; b) the expanded RF signal 

from the proximal pipe wall, Ar - the relative amplitude (with respect to the maximum value of the RF 
signal amplitude) 
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b) a) 

    
Fig.7  a) Changes of the maximal RF-signal amplitude as a function of angle α and - b) the transversal 
displacement L of the ultrasonic beam axis x1, with respect to the arterial model axis x2 (see Figure 1) 
for phantom diameter 5mm. Ar - maximal RF-signal amplitude with respect to the maximal RF - 

signal amplitude for the angle α = 90 deg and transversal displacement L = 0mm 



 
 
 
 
 
 
 
 
 
 

c) d) 

Fig.8  Results of calculations for phantom diameter 8mm and 3mm. -c) for the transversal 
displacement L = 0mm. - d) for the angle a = 90deg. Ar - maximal RF-signal amplitude with respect to 

the maximal RF – signal amplitude 
 

4. SOLVER APPLICATION 

4.1 IMT EXAMINATION 

The examination of the change in the artery wall thickness was carried out by solver on  
a numerical model. The artery wall is composed of three layers: the adventitia, the media and 
the intima. The wall thickness changed under the blood pressure change during the cardiac 
cycle.  The intima-media thickness (IMT) was calculated on the basis of the distance between 
two successive echoes which correspond to reflection from intima and adventitia layers 
respectively for the given IMT1 -intima+media thickness in the numerical model. The zeros 
crossing [] and the correlation methods was used for IMTZC and IMTCOR determination.   
 The internal radius of the artery numerical model was 3 mm for the diastolic pressure 
and 3.3 mm for the systolic pressure. For diastolic pressure, the thickness of the intima, the 
media and the adventitia layer was equal to 0.12 mm, 0.36 mm and 0.12 mm respectively. 
Taking into account the incompressibility of the material, from which the artery wall was 
made, the IMT1 was changed from 0.48 mm to 0.44 mm respectively [9]. 
 

4.2 METHODS EXAMINATION 

For the ideal method of the IMT determination the relation between truth end estimated value 
is as follows: 
                                                         IMT (IMT1) = a·MT1+b                       
(Eq.11) 
where:   , . 1=a 0=b
In our numerical experiment we obtained: 
                                                    IMTZC =0.8306·MT1+0.1254                (Eq.12) 
 
                                                    IMTCOR =1.2469·MT1-0.0712            (Eq.13) 
 

That means, that the zero-crossing method is under- (a<1), during the correlation 
method is over - estimated (a>1) (see Figure 9). 
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Fig.9 Numerical experiment. Comparison of the methods used for IMT examination. 
IMT1-thrue values. IMTZC- results obtained on the base of the zero-crossing method 

IMTCOR- results obtained on the base of the correlation method. 
IMTMED- mean values – dashed line 

 
 The IMTMED≡(IMTZC+IMTCOR)/2 denotes averaging results obtained from both 
methods. As we see for IMTMED   a=1.0388≈1;  b=0.0271. That confirms our hypothesis that 
combination of the both methods gives results very closed to the ideal (see Figure 9). 

 
5. CONCLUSIONS 

 
Comparison between the results that were obtained from numerical calculations and from 
measurements (Figures. 2 – 7) serves as a proof that the numerical model that was developed 
by our own enables simulation of the experiments with a good coherence. It is the matter of 
high importance when the designing process of measurement equipment is to be optimized. 
More expanded discussion see [8]. Results obtained on the basis of numerical calculations in 
the controlled environment (IMT1) permitted for determining the zero-crossing method and 
the correlated method as under estimated and over estimated methods respectively, hence, the 
results obtained after averaged results from both methods involve a very small error of the 
estimation, relatively lowest, compare to the each of them (see Figure 9). 
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