PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Low- and high-frequency elastic scattering analysis of fluid-filled, flat-endcapped cylindrical shells proud on a sandy seabed

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work presents the analysis of at-sea scattering data by a man-made target which supports the excitation of strong structural waves or resonances, not only at low but even at high frequency (ka>100). The object is a water-filled, flat-endcapped, 2m-long, steel cylindrical shell, measured both at low frequency (2-10 kHz) and at high frequency (120 kHz), where different elastic phenomena are supported and identified. In particular, in the high-frequency sonar images obtained with an AUV-mounted synthetic aperture sonar, significant elastic effects clearly appear, which are interpreted as echoes of a shear wave travelling axially along the cylindrical shell. For interpretation of sonar images it is crucial to understand and predict these supplementary scattering mechanisms.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
388--400
Opis fizyczny
Bibliogr. 20 poz., rys., wykr.
Twórcy
autor
autor
Bibliografia
  • 1. R. Manning, Small object classification performance of high-resolution imaging sonars as a function of image resolution, in Procs. of IEEE Oceans’02, Vol. 4, 2156-2163, 2002.
  • 2. A. Bellettini, et al., Experimental results of a 300 kHz shallow water synthetic aperture sonar, in Procs. of UAM’07 Conf., Crete, 2007.
  • 3. H. Schmidt, et al., GOATS’98 – Bistatic seabed scattering measurements using autonomous underwater vehicles, SACLANTCEN Report SR-302, La Spezia, 1998.
  • 4. A. Tesei, et al., Physics-based detection of man-made elastic objects buried in high-density-clutter areas of saturated sediments, Applied Acoustics, invited to Special Issue on The detection of buried marine targets, 2008 (in press).
  • 5. S.F. Morse, et al., High-frequency backscattering enhancements by thick finite cylindrical shells in water at oblique incidence: Experiments, interpretation, and calculations, J. Acoust. Soc. Am., Vol. 103 (2), 785-794, 1998.
  • 6. S.F. Morse and P.L. Marston, Meridional ray backscattering enhancements for empty truncated tilted cylindrical shells: Measurements, ray model, and effects of a mode threshold, J. Acoust. Soc. Am., Vol. 112 (4), 1318-1326, 2002.
  • 7. S.S. Dodd, Sonar imaging of elastic fluid-filled cylindrical shells, Ph.D. Thesis, ARL:UT Austin, 1995.
  • 8. G. Kaduchak et al., Elastic wave contributions in high-resolution acoustic images of fluid-filled, finite cylindrical shells in water, J. Acoust. Soc. Am., Vol. 100 (1), 64-71, 1996.
  • 9. D. Brown, et al., Results from a small synthetic aperture sonar, Procs. IEEE Oceans Conf., Boston, 2006.
  • 10. A. Maguer, et al., Buried mine detection and classification (Research Summary 1996-1999), SACLANTCEN Report SR-315, La Spezia, 1999.
  • 11. A.D. Pierce and H.-G. Kil, Elastic wave propagation from point excitations on thin-walled cylindrical shells, J. of Vibration and Acoustics, Vol. 112, 399–406, 1990.
  • 12. H. Überall, Acoustics of shells, Acoust. Physics, Vol. 47 (2), 115–139, 2001.
  • 13. A. Tesei, et al., Target parameter estimation using resonance scattering analysis applied to air-filled, cylindrical shells in water, J. Acoust. Soc. Am., Vol. 108 (6), 2891-2900, 2000.
  • 14. M. de Billy, et al., Ray theory applied to the internal caustic identification of liquid cavities acoustically insonified, J. Acoust. Soc. Am., Vol. 95 (2), 1143-1146, 1994.
  • 15. P.L. Marston and D.S. Langley, Glory and rainbow enhanced acoustic backscattering from fluid spheres: Models for diffracted axial focusing, J. Acoust. Soc. Am., Vol. 73 (5), 1464–1475, 1983.
  • 16. N.D. Veksler, Resonance acoustic spectroscopy, Springer, Berlin 1993.
  • 17. J.D. Achenbach, Wave propagation in elastic solids, Elsevier, Amsterdam 1975.
  • 18. G.S. Sammelmann, et al., The acoustic scattering by a submerged spherical shell. I. The bifurcation of the dispersion curve for the spherical antisymmetric Lamb wave, J. Acoust. Soc. Am., Vol. 85, 114-124, 1989.
  • 19. A. Tesei, et al., Verification of a 3-D structural-acoustic finite-element tool against thin-shell scattering models, Procs of the 7th ECUA Conf., Delft, 431-436, 2004.
  • 20. J. Groen, et al., Shadow enhancement in synthetic aperture sonar using fixed focusing, IEEE J. of Oceanic Eng., accepted for publication.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWMA-0018-0033
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.