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A flat circular membrane is located near the three- wall corner, limited by the three 
rigid baffles  arranged perpendicularly to each other. The problem of sound radiation has 
been solved using the spectral form of the Green function for this Neumann boundary value 
problem together with the complete eigenfunction system of the axisymmetric and asymmetric 
modes of the membrane is excited by a surface vibrating harmonically with respect to time 
within the vacuum. The membrane is excited by a surface force. The acoustic attenuation 
3399effect has been taken into account as well as the influence of the corner baffles. The 
resultant sound pressure and the resultant acoustic impedance have been presented as their 
eigenfunction series. The modal, self and mutual, radiation resistance has been presented in 
the form of the approximation valid within the low frequency vibration range. The low 
frequency approximation for the modal radiation reactance has been obtained on the basis of 
the radiation resistance using the Hilbert transform. 

 
 

INTRODUCTION 
 

A number of detailed research reports on the problems of sound radiation of vibrating 
surface sources embedded into a flat rigid baffle was presented so far. 

The authors of this paper have extended this area research with the energy aspect of the 
pistons radiating the acoustic waves into the subspaces of the two wall corner and the three 
wall corner [1, 2]. The basis of the analysis has been the spectral form of the Green function 
satisfying the Neumann boundary conditions at the two wall corner and the three wall corner. 
This Green function has been used to obtain the modal impedance [3], especially within the 
low frequency range. Further, this modal impedance has been used to present the total sound 



power radiated by an asymmetrically vibrating circular membrane located in the vicinity of 
the two wall corner. 

This paper contains a continuation of the previous research and focuses on using the 
spectral form of the Green function for the Neumann boundary value problem at the subspace 
of the three wall corner and to obtain the modal radiation impedance of a vibrating circular 
membrane embedded into one of the three rigid baffles situated perpendicularly to each other. 
The total sound power radiated has also been focused on. The membrane has been excited by 
an asymmetric surface force. The acoustic attenuation has been included in the results 
presented herein. 

Using the modal analysis has led to the formulation of the modal radiation impedance in 
Eq. (3.10), and to the approximation of the modal radiation resistance in Eq. (4.5) valid when 
the linear sizes of the membrane are small as compared with the radiated wave length, i.e. 
when 120 <<= λπ aak . Further, the Hilbert transform has been used to obtain the modal 
radiation reactance of the two initial axisymmetric modes in Eq. (4.9) directly from the 
corresponding modal radiation resistance from Eq. (4.6). Some sample numerical results have 
been illustrated in Figs. 2–6. The results presented herein can be used for some further 
numerical analyses of the total sound power radiated by the membrane excited by various 
axisymmetric and asymmetric surface forces. 

 
1. THE SOUND PRESSURE 

 A circular membrane of radius a vibrates axisymmetrically within the subspace of the 
three wall corner bounded by the three rigid baffles situated perpendicularly each other. The 
subspace , ∞≤≤ x0 ∞≤≤ y0 , ∞≤≤ z0  is filled with the lossless gaseous medium of rest 
density . The membrane is embedded into the baffle z=0 and is illustrated in Fig. 1. 0ρ

 
 

Fig.1 The location of the membrane at the three-wall corner 
 

The sound pressure radiated by the membrane )t,r(p
r  can be formulated as tierptrp ω−= )(),( rr  

for some time harmonic processes where ω  is the circular frequency. The sound pressure 
amplitude has been defined using the Green function 
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where λπ= 2k 0  is the acoustic wavenumber, λ  is the wavelength and c is the sound 
velocity within the gaseous medium under consideration. The vibration velocity amplitude of 
the membrane is ),r(v)r(v 000 ρ=

r ),r(Wi 00 ρω−= . The Green function for the Helmholtz 



equation satisfying the Neumann boundary conditions at the baffles x=0, y=0 and z=0 as well 
as “the sharpened Sommerfeld radiation condition” [4] has been expressed in its Fourier 
representation [2] 
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where 222
0k η−ζ−=γ  and remembering that the sound source is located in the half-plane 

. 0z0 =
 It is enough to obtain the sound pressure for z=0 while analyzing the energy aspect of 
the sound radiation, i.e. the acoustic impedance. The Cartesian coordinates of the field point 
and the source point can be converted to their local polar coordinates for  0zz 0 ==
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where  and  are the Cartesian coordinates of the central point of the 
membrane (Fig. 1). 

β= cosllx β= sinlly

 The transverse deflection amplitude of the membrane has been formulated as the 
following double eigenvalue series 
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where  the eigenfunction of the mode  is (cf. Eq. (B.3)) ),( nm
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and , for 10 =ε 2m =ε 1m ≥ ,  is the root of the membrane’s frequency equation ak mnmn =β

0)(J mnm =β . The characteristic radiation function has been formulated as 
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Applying Eq. (2.4), (2.5), (2.1), (2.2), (2.6) leads to the sound pressure amplitude in the form 
of 
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and ,22 η+ζ=τ  ατ=ζ cos , ατ=η sin , αττ=ηζ dddd . The integration in Eq. (2.7) is  
performed over the variable '  along the real axis within the limits  whereas the 
integration over the real variable  is performed within the limits 

'i' τ+τ=τ ),0( ∞
α )2/,0( π . 

 
2. SOUND RADIATION IMPEDANCE 

 After using the sound pressure amplitude from Eq. (2.1) the mutual sound power of the 
vibration modes (m,n) and (m’,n’) has been formulated as [3] 
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whereas the normalized radiation impedance has been formulated as 
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is the time-averaged and surface-averaged vibration velocity square of the mode (m,n) and is 
equal to (1/2)  for any mode.  The total sound power is [3] 2ω
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and it is necessary to determine the coefficients  as well as the modal sound power 
radiated , active and reactive. The equation of motion of the 
membrane excited by a surface force, including the acoustic attenuation, was analysed earlier 
in [3] and also has been presented in Appendix B for convenience. This appendix contains 
also the set of algebraic equations (B.5) together with its solutions  as well as the total 
sound power from Eq. (B.7) in a form different than in the Eq. (3.4). 
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For the purpose of the later obtaining the values of the coefficients  it is necessary 
former to obtain the modal radiation impedance. This modal radiation impedance has been 
formulated using the characteristic functions from Eq. (2.8).  The expressions in Eqs. (2.1) 

and (2.7) have been multiplied side by side by 
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membrane surface and the general terms of the quadruple series have been compared each 
other. Eqs. (2.2), (3.1) and (3.2) have been used giving 
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where the integration has been performed along the real axis 'Oτ  of the complex variable 
'  omitting the branch point 'i' τ+τ=τ 0k'=τ . 

 Eq. (2.11) represents the characteristic function ),(Mmn ατ  in its elementary form which 
used in the integrand in Eq. (3.5) makes it possible to compute the integral over the variable 

 within the limits α )2/,0( π . 
 The products of the two different characteristic functions (cf. Eq. (2.11)) can be 
formulated as 
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with the following denotations 
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where 
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The modenumbers m  and 'm  can be even or odd. If m is even and m’ is odd or m is odd and 
m’ is even then m+m’ and m-m’ are odd and 0q1 = , 12 =q . Another case is when m and m’ 
are even or m and m’ are odd. In this case m+m’ and m-m’ are even and , . At 
this stage of analysis we can already conclude that for taking into consideration influences of 
all three rigid baffles on radiating the sound pressure it is necessary to accept that 

1q1 = 0q2 =

1q1 = , 
. The result of integrating is the following ( (A.1) – (A.6) ) 0q2 =
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where in the symbol  the plus sign (here upper) concerns the excitation ± ϕmcos  for 
m=0,1,2,…, in Eq. (2.5) whereas the negative sign (here bottom) concerns the excitation 

 for m=1,2, … ϕmsin
 The modal mutual radiation impedance has been formulated as a single integral 
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with the following denotations 
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 The square root 22
0 τ−k  assumes its real values for 00 k≤≤τ  whereas for ∞<≤τ0k  

it assumes its imaginary values 2
0

2 ki −τ . The remaining part of the integrand assumes its 
real values within the integration limits ∞<≤τ0 . For this reason, the modal radiation 
impedance '', nmmnξ  has been formulated using the modal radiation resistance ''. nmmnθ  and the 
modal radiation reactance ''. nmmnχ  as follows '','','', nmmnnmmnnmmn iχθξ −= . 
 In the specific case, when the liming transition is realized ∞→xl  within the integrand 
of Eq. (3.11) the expression is obtained 
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which represents the normalized mutual radiation impedance of the modes  and  
of the circular membrane vibrating and radiating into the two-wall corner subspace. The result 
in Eq. (3.12) is identical as that presented earlier in [3]. The limiting transitions considered 
can be interpreted physically in that way that the rigid baffle 

),( nm )','( nm

0=x  has been shifted infinitely 
from the membrane. 
 The obtained formulations of the radiation resistance are the basis for their low- and 
high-frequency approximations (cf. [5] and [6]). 
 

3. THE MODAL RADIATION IMPEDANCE IN THE CASE OF THE LOW 
FREQUENCIES ( 10 <<ak ) 

The modal radiation resistance in the form of its single integral can be obtained from 
Eq. (3.10), if the integration is performed within the finite limits )0( 0k≤≤τ . In the case of 
the small values of the interference parameter 10 <<ak , the following part of the 



corresponding integrand can be expressed as its expansion series taken around the point 
a τ =0 
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The integrand in Eq. (3.10) contains the double and triple Bessel function products. In the 
case of the double Bessel function products the second formula in Eq. (4.1) has been used 
whereas, in the case of the triple Bessel function products the first formula in Eq. (4.1) has 
been used. Introducing the two different formulations for the product in Eqs. (4.1) has been 
motivated by some further approximations of the modal radiation resistance and reactance. 
 The remaining part of the integrand in Eq. (3.10) containing the Bessel functions of the 
orders m+m’ and m=m’ has been left unchanged during the integration (cf. Eqs. (3.10) and 
(3.11)). Further, it is necessary to approximate the value of the following integral 
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for  and  has been computed using the formula presented 
earlier in [7] as well as in Appendix A (Eq. (A.7)) giving its elementary form 
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for 01n 00 >++> νandk . Further, using this formula results in the following elementary 
expression for the modal radiation resistance 
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for the interference parameter 10 <<ak . The approximation in Eq. (4.5) has been derived 
neglecting the term  in the expansion series from Eq. (4.1). The factor  given 
in Eq. (A.4) equal to the unity indicates only the terms in Eq. (4.5) in which  and 

 are even numbers. 
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In the specific case when  in Eq. (4.5) the modal radiation resistance of the two 
axisymmetric modes  and  has been obtained in the form of 
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where the second approximation term 
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represents the influence of the corresponding baffles of the three wall corner on the modal 
radiation resistance '0,0 nnθ . The distance between the vibrating membrane central point and 
the central points of the three mirror images of the membrane is equal to   and , 
respectively. 

xl2 , yl2 l2

 The modal radiation reactance χ  corresponding to the modal radiation resistance θ  has 
been obtained using the Hilbert transform [8] 
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the following formulation [7] 
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as well as the relation zzzN  cos) /(2)(2/1 π−=  where  is the Neumann function of the 
order ½, should also be used. The modal radiation impedance (resistance and reactance) has 
been expressed as the following single formulation 
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where  is the spherical Hankel function of the first kind and  is 
the spherical Neumann function, both of the zero order. This spherical Hankel function has 
been expressed using the exponential function as 
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using the two different approximate formulas from Eq. (4.1) has assured the absolute 
convergence of the integrals appearing during the application of the Hilbert transform while 
computing the radiation reactance directly from the corresponding radiation resistance. 

 
4. FINAL REMARKS 

 The energy aspect of sound radiation of a vibrating circular membrane embedded into 
one of the three rigid baffles of the three wall corner situated perpendicularly to each other 
has been analyzed in this study. The main aim was to formulate the modal radiation 
impedance as a single integral in Eq. (3.10). This integral contains the triple product of the 



Bessel functions of the integer order. The two different approximations of the double product 
of the Bessel function of the integer order in Eq. (4.1) have been used while evaluating the 
modal radiation resistance from Eq. (3.10), i.e. while computing the integral with the finite 
limits [0, ]. The approximation given in Eq. (4.5) containing the spherical Bessel functions 
can be useful for computations within the low frequency range, i.e. when the interference 
parameter . This approximation together with Eq. (4.6) makes it possible to analyze 
separately the main contribution of the influence of the two vertical baffles of the three wall 
corner subspace on the modal radiation resistance. The influence of the superposing acoustic 
waves reflected by the two vertical baffles on the modal radiation resistance has been 
described by the spherical Bessel functions with the corresponding arguments being the 
following values of the interference parameter:   and . The modal radiation  
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Fig.2  The sum of the modal radiation self-resistance of the mode (0,1) and the modal 
mutual resistance of the membrane mode (0,1) and its mirror image  mode (0,1) as a 

function of the parameter 010 / βak  for 3/ =aly  and 41.201 =β . The solid line– results from 
Eq. (3.12), the dashed line the results from the following expression 
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Fig.3 The sum of the modal radiation self-resistance and the modal mutual resistance of 
the membrane mode  and its mirror image mode  as a function of the parameter 

)1 ,1(
)1 ,1( )1 ,1(

110 / βak  for  and 3/ =aly 83.311 =β . The solid and dashed lines result from Eq. (3.12).  It has 
been assumed for the solid line that the vibrations of the membrane are described by the 



function cosinus and for the dashed line by the function sinus. The remaining lines have been 
plotted from the following expression 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

+±≅
0
1

)2(
2

)2()()(
02

0

01

0

00
2

11

4
0

11,11 y
y

y lkj
lk
lkj

ak
akjak

β
θ ,  

⎭
⎬
⎫

⎩
⎨
⎧

⇒
⎭
⎬
⎫

⎩
⎨
⎧

ϕ
ϕ

m
m

sin
cos

0
1

For the dashed-dotted line it has been assumed that the vibrations are described by the 
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reactance '', nmmnχ  for the mode pair (m, n) and (m’, n’) has been obtained from Eq. (3.10) by 
integrating within the infinite limits )( 0 ∞<≤τk . In the specific case when , the 
modal radiation impedance  for the axisymmetric mode pair (0, n) and  
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Fig.4  The  modal mutual resistance of the membrane mode (2,1) and its mirror image  mode 
(0,1) as a function of the parameter 010 / βak  for 3/ =aly , 41.201 =β  and 14.521 =β . The solid 

line– results from Eq. (3.12), the dashed line the results from the following expression 
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Fig.5 The sum of the modal radiation self-resistance and the modal mutual 
resistance of the membrane mode  and its mirror image mode  as a function of 
the parameter 

)1 ,2(
)1 ,2( )1 ,2(

210 / βak  for  and 3/ =aly 14.521 =β . The solid and dashed lines result from 



Eq. (3.12).  It has been assumed for the solid line that the vibrations of the membrane are 
described by function cosinus and for the dashed line by function sinus. The remaining 

lines have been plotted from the following expression 
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For the dashed-dotted line it has been assumed that the vibrations are described by the 
cosinus function and for the dotted line by the sinus function. 
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Fig.6 The modal radiation resistance as a function of the parameter . aly /

The solid line - the sum of the modal radiation self-resistance and the modal mutual 
resistance of the membrane mode  and its mirror image mode  for 

)1 ,1(
)1 ,1( )1 ,1( 2.0/ 110 =βak . 

The dashed line -  the sum of the modal radiation self-resistance and the modal 
mutual resistance of the membrane mode  and its mirror image mode  for 

)1 ,2(
)1 ,2( )1 ,2(
2.0/ 210 =βak . 

The curves have been  plotted  by using the formulae from the legends of  Fig. 3 and 
Fig.5 and it has been assumed that the vibration of the membrane is described by sinus 

function. 
 

 
(0, n’) has been approximated in Eq. (4.9) which contains the spherical Hankel functions of 
the first kind and the zero order, only. 

Within the high frequency range )( 0 mnak β> , the modal radiation resistance '', nmmnθ  can 
be approximated by exchanging the integral in Eq. (3.10) by the corresponding path integral, 
and further by computing the remainders at the poles of the integrand  as well as by using the 
asymptotic method of computing the integrals. The modal radiation reactance '', nmmnχ  can be 
approximated using the stationary phase method (cf. [5]).  
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APPENDIX A 
 

The values of the following integrals are necessary 
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where 

m,m’=0,1,2,…, , β= cosllx β= sinlly  oraz [ ]'mm
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 The integrals  and  computed within the limits (0, π/2) have been exchanged  by 
the corresponding integrals computed within the limits (0, π) 
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Applying the following Fourier series [8] 
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has made it possible to obtain the following values of the integrals 
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where it has been denoted 
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and the plus sign in the symbol ± is related to the functions cos mα and cos m’α for 
m, m’=0,1,2,… whereas the minus sign is related to the functions sin mα and sin m’α for 
m, m’=1,2,… 
 While computing the integral in Eq. (4.3) the following more general formula has been 
used [7] 
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APPENDIX B 

 
 A detailed vibration analysis of the circular membrane has been presented in [3]. The 
equation of motion of the excited membrane including the acoustic attenuation in its 
amplitude form  is 

TrpTrfrWk /),(/),(),()( 22 ϕϕϕ −−=+∇ ,    (B.1) 
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, , T is the stretching force, 22 / kT =σω σ  is the surface 

density of the membrane material, ω  is the circular frequency of the excitation 
)exp(),( tirf ωϕ − ,  ),( ϕrf  is the excitation amplitude and ),( ϕrp  is the amplitude of the 

acoustic pressure radiated by the membrane. It has been assumed that the radiation of the 
bottom side of the membrane (i.e. for z < 0) is suppressed. 
 The solution of Eq. (B.1) has been formulated as 
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and the corresponding eigenfunctions satisfying the equation  of the 
mode (m,n) are 
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The eigenfunctions have been normalized by 
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where 10 =ε , 2=mε  for , and 1≥m akmnmn =β  being the root of the frequency equation 

0)( =mnmJ β . 
 The equation of motion (B.1) has been rearranged and formulated as the following set 
of algebraic equations [3]  
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where σωρε /' 0c=  determines the acoustic attenuation, and  
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 Applying the set of algebraic equations (B.5) and the formulation of the modal radiation 
resistance ''. nmmnξ  leads to the following formulation for the total sound power radiated 
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