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A flat circular membrane is located near the three- wall corner, limited by the three
rigid baffles arranged perpendicularly to each other. The problem of sound radiation has
been solved using the spectral form of the Green function for this Neumann boundary value
problem together with the complete eigenfunction system of the axisymmetric and asymmetric
modes of the membrane is excited by a surface vibrating harmonically with respect to time
within the vacuum. The membrane is excited by a surface force. The acoustic attenuation
3399effect has been taken into account as well as the influence of the corner baffles. The
resultant sound pressure and the resultant acoustic impedance have been presented as their
eigenfunction series. The modal, self and mutual, radiation resistance has been presented in
the form of the approximation valid within the low frequency vibration range. The low
frequency approximation for the modal radiation reactance has been obtained on the basis of
the radiation resistance using the Hilbert transform.

INTRODUCTION

A number of detailed research reports on the problems of sound radiation of vibrating
surface sources embedded into a flat rigid baffle was presented so far.

The authors of this paper have extended this area research with the energy aspect of the
pistons radiating the acoustic waves into the subspaces of the two wall corner and the three
wall corner [1, 2]. The basis of the analysis has been the spectral form of the Green function
satisfying the Neumann boundary conditions at the two wall corner and the three wall corner.
This Green function has been used to obtain the modal impedance [3], especially within the
low frequency range. Further, this modal impedance has been used to present the total sound



power radiated by an asymmetrically vibrating circular membrane located in the vicinity of
the two wall corner.

This paper contains a continuation of the previous research and focuses on using the
spectral form of the Green function for the Neumann boundary value problem at the subspace
of the three wall corner and to obtain the modal radiation impedance of a vibrating circular
membrane embedded into one of the three rigid baffles situated perpendicularly to each other.
The total sound power radiated has also been focused on. The membrane has been excited by
an asymmetric surface force. The acoustic attenuation has been included in the results
presented herein.

Using the modal analysis has led to the formulation of the modal radiation impedance in
Eq. (3.10), and to the approximation of the modal radiation resistance in Eq. (4.5) valid when
the linear sizes of the membrane are small as compared with the radiated wave length, i.e.
when k,a=27a/l<<1. Further, the Hilbert transform has been used to obtain the modal

radiation reactance of the two initial axisymmetric modes in Eq. (4.9) directly from the
corresponding modal radiation resistance from Eq. (4.6). Some sample numerical results have
been illustrated in Figs. 2—6. The results presented herein can be used for some further
numerical analyses of the total sound power radiated by the membrane excited by various
axisymmetric and asymmetric surface forces.

1. THE SOUND PRESSURE

A circular membrane of radius a vibrates axisymmetrically within the subspace of the
three wall corner bounded by the three rigid baffles situated perpendicularly each other. The
subspace 0<x <00, 0<y<oo, 0<z <00 is filled with the lossless gaseous medium of rest

density p,. The membrane is embedded into the baffle z=0 and is illustrated in Fig. 1.
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Fig.1 The location of the membrane at the three-wall corner

The sound pressure radiated by the membrane p(7,t) can be formulated as p(F,t)= p(F)e '

for some time harmonic processes where ® is the circular frequency. The sound pressure
amplitude has been defined using the Green function

p(F) = —ik,p,¢ [ v(T,)G(T, | F)dS,, 2.1

where k, =2m/L is the acoustic wavenumber, A is the wavelength and ¢ is the sound

velocity within the gaseous medium under consideration. The vibration velocity amplitude of
the membrane is v(t,) = v(r,,p,) =—-i®W(r,,p,). The Green function for the Helmholtz



equation satisfying the Neumann boundary conditions at the baffles x=0, y=0 and z=0 as well
as “the sharpened Sommerfeld radiation condition” [4] has been expressed in its Fourier
representation [2]
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§=0 n=0
where y=,/k; —(’> —n’ and remembering that the sound source is located in the half-plane
z,=0.
It is enough to obtain the sound pressure for z=0 while analyzing the energy aspect of

the sound radiation, i.e. the acoustic impedance. The Cartesian coordinates of the field point
and the source point can be converted to their local polar coordinates for z=z, =0
x=1 +rcosq, y=1_+rsing,
’ . (2.3)
X, =1, +1,c080,, y,=1 +r1,8m@,,
where 1, =IcosP and 1 =Isinf3 are the Cartesian coordinates of the central point of the

membrane (Fig. 1).
The transverse deflection amplitude of the membrane has been formulated as the
following double eigenvalue series

W(r,p)= i icmnwmn (r, ), (2.4)

m=0 n=1
where the eigenfunction of the mode (m,n) is (cf. Eq. (B.3))

1, (k1) [cos(mg)
Won 09) = 72 (an{sin(mcp)}’ 22

and g, =1, ¢ _=2for m>1, B, =k, a is the root of the membrane’s frequency equation

J(B,.)=0. The characteristic radiation function has been formulated as

M(,n) = j zjnv(ro,cpo)cos[&(lx +1, COS (po)] cos[n(ly +1, sin (po)]rodrod(po, (2.6)
Applying Eq. (2.4), (2.5), (2.1), (2.2), (2.6) leads to the sound pressure amplitude in the form
of

o dtdn
P(9) = 2/ )" pyck, | [M, () cos(Ex)eostiy) =1, @7

where

M(Gm) = X3, M, (G, (2.8)



M, (En)=ma’(-i)i" \/—anJm @),
B, —(ta)’
y cos(ma)cos(nl, )| [+ [1 +(=D" ]cos(Z;lx) + i[l —-(=DH" ]sin((;lx)
~isin(ma)sin(nl,) | | = [1+(=1)" [sin(¢1, ) +ifl = (=1)" Jeos(g1, ) |

(2.9)

and t=4/C*+1’, {=1cosa, n=1sina, d{dn =tdtda . The integration in Eq. (2.7) is
performed over the variable T =1t'+i1" along the real axis within the limits (0,00) whereas the
integration over the real variable o is performed within the limits (0,7/2).

2. SOUND RADIATION IMPEDANCE

After using the sound pressure amplitude from Eq. (2.1) the mutual sound power of the
vibration modes (m,n) and (m’,n”) has been formulated as [3]

PL 1y GGG DV (1S, dS, G.1)

SSo

mn,m'n'

whereas the normalized radiation impedance has been formulated as

m..
C o = , (3.2)
pOCS\/<| an |2><| Vm'n' |2>
where
(Vo F) = 5 ]V (P V(P 0 (3.3)

is the time-averaged and surface-averaged vibration velocity square of the mode (m,n) and is
equal to (1/2)®* for any mode. The total sound power is [3]

H = i i i icmnc*m'n'n mn,m'n" * (34)

and it is necessary to determine the coefficients c_ . as well as the modal sound power
radiated I1 =IT' —iI1"

— — s active and reactive. The equation of motion of the
membrane excited by a surface force, including the acoustic attenuation, was analysed earlier
in [3] and also has been presented in Appendix B for convenience. This appendix contains

also the set of algebraic equations (B.5) together with its solutions ¢, as well as the total
sound power from Eq. (B.7) in a form different than in the Eq. (3.4).
For the purpose of the later obtaining the values of the coefficients C,,, it is necessary

former to obtain the modal radiation impedance. This modal radiation impedance has been
formulated using the characteristic functions from Eq. (2.8). The expressions in Egs. (2.1)

and (2.7) have been multiplied side by side by v'(T)= ZZC (1), integrated over the

m'n' ll'l n'



membrane surface and the general terms of the quadruple series have been compared each
other. Egs. (2.2), (3.1) and (3.2) have been used giving

2\ k, T : r drda
e M, (r,a) M, (7,a)——, 3.5
Con (ﬂj 507 | [Mm(@0) M () s (3.5)

where the integration has been performed along the real axis Ot' of the complex variable
T=1"H1" omitting the branch point t'=k, .

Eq. (2.11) represents the characteristic function M _ (7,0 in its elementary form which
used in the integrand in Eq. (3.5) makes it possible to compute the integral over the variable
oo within the limits (0,7t/2).

The products of the two different characteristic functions (cf. Eq. (2.11)) can be
formulated as

an (’C’ a)M*m'n' (T’ a) = Amm'lIImn (T)le'n' (’C)me' (T’ a) H (3'6)

with the following denotations

A =(@SVi™ o, o W, (1) = Lealu()

Br, —(a)*’
V. (ra)= {c?s(m a)c.os(m'a)}
sin(Mea)sin(M'ex)
X { q, [(—l)m'(l tcos(27 |, sina)) +cos(27 I, cosa) +cos(27 |, cosa)cos(27 I, sin a)], (3.7)
+iq, [i sin(27 |, cosa) +sin(27 |, cosa) cos(27 I, sin a)] }
where
1 m+m' _ l _(_1\m+m’
q1—5[1+(—1) ], q2_2[1 -nm]. (3.8)

The modenumbers m and m' can be even or odd. If m is even and m’ is odd or m is odd and
m’ is even then m+m’ and m-m’ are odd and q, =0, g, =1. Another case is when m and m’

are even or m and m’ are odd. In this case m+m’ and m-m’ are even and q, =1, q, =0. At
this stage of analysis we can already conclude that for taking into consideration influences of
all three rigid baffles on radiating the sound pressure it is necessary to accept that q, =1,

q, =0. The result of integrating is the following ( (A.1) — (A.6))

47r/2 . 2
2 Vo (@) = G {(D)" | =y + 3 221,)
T 0 &

+J (27 |y)]+ i™m[3 Q)= . (2r])

+cos(m+mHA), .. (2c )+ (=)™ cos(m-m" B, .2z D]} (3.9)
+ 0" I QT L) EEDM I, 22 1)

+cos(m+m)A, (20 1)+ (=)™ cos(m—m) A, (27 1))

m+m’



where in the symbol * the plus sign (here upper) concerns the excitation cosme for
m=0,1,2,..., in Eq. (2.5) whereas the negative sign (here bottom) concerns the excitation
sinmo for m=1,2, ...

The modal mutual radiation impedance has been formulated as a single integral

k,S ° rdr
‘fmn,m'n' = :Z' V Em€m I{ ql (Vl +V2 +V3) + qz (Vz +V3)} LIJmn (T)\Pm'n'(r)ﬁa (3 10)
0 0 =T
with the following denotations
V, = (—l)m'imm'[ié‘mm, +dmel)EJ, Q)|
gm
V,=-D™"J Qrl)x=D"J, ..(2cl), (3.11)

V, =+(=)™™ cos(m+m"HAJ . .2z )+ (=1)" cos(m-m"H A2z ).

m+m

The square root /k; —7” assumes its real values for 0 <7 <k, whereas for k, <7 <oo

it assumes its imaginary values i,/z> —k; . The remaining part of the integrand assumes its
real values within the integration limits 0<7 <o. For this reason, the modal radiation
impedance & has been formulated using the modal radiation resistance & and the

mn.m'n'
= emn,m'n' - IZmn,m'n' .

mn,m'n’'
modal radiation reactance y,, . as follows &, ...

In the specific case, when the liming transition is realized |, — oo within the integrand
of Eq. (3.11) the expression is obtained

lelil;lc é:mn,m'n'(lx) = (kOS /ﬂ)(_l)m Y, Enm

T (ray ,.(ra) 2 S J @)+l (27l) rdr (3.12)
V(T W (7)) — O +J mm (2T +J_(2r _rdr
0 &, y y \/kgj

which represents the normalized mutual radiation impedance of the modes (m,n) and (m',n")
of the circular membrane vibrating and radiating into the two-wall corner subspace. The result
in Eq. (3.12) is identical as that presented earlier in [3]. The limiting transitions considered
can be interpreted physically in that way that the rigid baffle X=0 has been shifted infinitely
from the membrane.

The obtained formulations of the radiation resistance are the basis for their low- and
high-frequency approximations (cf. [5] and [6]).

3. THE MODAL RADIATION IMPEDANCE IN THE CASE OF THE LOW
FREQUENCIES (k,a<<1)

The modal radiation resistance in the form of its single integral can be obtained from
Eq. (3.10), if the integration is performed within the finite limits (0 <7 <k,). In the case of

the small values of the interference parameter kj,a<<1, the following part of the



corresponding integrand can be expressed as its expansion series taken around the point
ra=0

(ra/2)™™ > 44
Y Y . (r)z2——— I+, .(ra) +0(r"a 4.1
(¥ ()2 (g (r2)" +O( ")) (1)
where
1 111 1
Ay =5+ —5——— + , Oy = 12 + 12 i . 4.2)
g Bl 4lm+l mel pE B 4m+l

The integrand in Eq. (3.10) contains the double and triple Bessel function products. In the
case of the double Bessel function products the second formula in Eq. (4.1) has been used
whereas, in the case of the triple Bessel function products the first formula in Eq. (4.1) has
been used. Introducing the two different formulations for the product in Egs. (4.1) has been
motivated by some further approximations of the modal radiation resistance and reactance.
The remaining part of the integrand in Eq. (3.10) containing the Bessel functions of the

orders m+m’ and m=m’ has been left unchanged during the integration (cf. Egs. (3.10) and
(3.11)). Further, it is necessary to approximate the value of the following integral

kg
1(ky,0) = | M (cr) S (4.3)
0 kOZ _2-2
for n=0,1,2,... and v=m+m',m-m' has been computed using the formula presented

earlier in [7] as well as in Appendix A (Eq. (A.7)) giving its elementary form

I(K,,c)=n!(V+ n)!k(f"““( j Z (D) (kye/2)" (k,C), (4.4)

< sl(V+9)!(n— s)' Jounss

for k, >0and v +n+1> 0. Further, using this formula results in the following elementary
expression for the modal radiation resistance

N £, (koa)z koa m+m' 5 2m+m'+1 e
=Y =) s (2m+1),m,m,,[ql( D™ (21,

O e =
e ﬂmnﬂm'n'
FED™™ (2 )E (D)™™ cos(M+m') B (2k,D)]

Jm+m

+i‘ ( 1) r q( l)m e (koly)s_mljs+m(2k0|y)i(_l)m(kolx)s_m'js+m(2k0|><)

= s!(m—-m'+s)!(m" s.)'L

+(—1) cos(m-m' )ﬁ(kol)s " j5+m(2k0|)] }’

(4.5)

for the interference parameter k,a<<1. The approximation in Eq. (4.5) has been derived
neglecting the term «,..(ra)” in the expansion series from Eq. (4.1). The factor g, =1 given

in Eq. (A.4) equal to the unity indicates only the terms in Eq. (4.5) in which m+m' and
m-m' are even numbers.

In the specific case when m=m'=0 in Eq. (4.5) the modal radiation resistance of the two
axisymmetric modes (0,n) and (0,n') has been obtained in the form of



k,a)? . 1
HOn,Onvé{Z;OZ) Jo(koa)+¢9}{0}, (4.6a)

on/on'
where the second approximation term

(koa)*

on/~o0n'

Q' =2

Lo 2K1) + o (2K1,) + jo(zkol){g}, (4.6b)

represents the influence of the corresponding baffles of the three wall corner on the modal
radiation resistance 6, The distance between the vibrating membrane central point and

0on,0on"*
the central points of the three mirror images of the membrane is equal to 2Il,, 2l and 2I,

y
respectively.
The modal radiation reactance y corresponding to the modal radiation resistance & has

been obtained using the Hilbert transform [8]

2k, ¢ 6(x)
k)="2|—"dx, 4.7
Z( 0) 7 !XZ —k02 ( )

the following formulation [7]

23, ,(bx)dx o«
[t =gk N ko) (4.8)

as well as the relation N, ,(z) =—2/(zz)cosz where N, ,(z) is the Neumann function of the

order 'z, should also be used. The modal radiation impedance (resistance and reactance) has
been expressed as the following single formulation

: 1
S sz(“—a)[hy’(koawhél><2kolx>+hé“<zkoly>+hS)(szI)]{O}, 49)

on/~on'

where h{"(z) = j,(2)+in,(2) is the spherical Hankel function of the first kind and n,(z) is
the spherical Neumann function, both of the zero order. This spherical Hankel function has
been expressed using the exponential function as h{"(z) = exp(iz)/iz. It is worth noticing that
using the two different approximate formulas from Eq.(4.1) has assured the absolute

convergence of the integrals appearing during the application of the Hilbert transform while
computing the radiation reactance directly from the corresponding radiation resistance.

4. FINAL REMARKS

The energy aspect of sound radiation of a vibrating circular membrane embedded into
one of the three rigid baffles of the three wall corner situated perpendicularly to each other
has been analyzed in this study. The main aim was to formulate the modal radiation
impedance as a single integral in Eq. (3.10). This integral contains the triple product of the



Bessel functions of the integer order. The two different approximations of the double product
of the Bessel function of the integer order in Eq. (4.1) have been used while evaluating the
modal radiation resistance from Eq. (3.10), i.e. while computing the integral with the finite
limits [0, k,]. The approximation given in Eq. (4.5) containing the spherical Bessel functions

can be useful for computations within the low frequency range, i.e. when the interference
parameter K,a <<1. This approximation together with Eq. (4.6) makes it possible to analyze

separately the main contribution of the influence of the two vertical baffles of the three wall
corner subspace on the modal radiation resistance. The influence of the superposing acoustic
waves reflected by the two vertical baffles on the modal radiation resistance has been
described by the spherical Bessel functions with the corresponding arguments being the
following values of the interference parameter: 2k,l,, 2kl and 2kl . The modal radiation

(]

mn.,m'n'

1+

0.4
koa/B..,

Fig.2 The sum of the modal radiation self-resistance of the mode (0,1) and the modal
mutual resistance of the membrane mode (0,1) and its mirror image mode (0,1) as a
function of the parameter kja/ g, for I,/a=3 and S, =2.41. The solid line— results from

Eq. (3.12), the dashed line the results from the following expression
Oor,01 = 2(koa/ By )’ [jo(koa) + j0(2k0|y)]

Fig.3 The sum of the modal radiation self-resistance (1,1) and the modal mutual resistance of
the membrane mode (1,1) and its mirror image mode (1,1) as a function of the parameter
koa/p for 1, /a=3 and f;, =3.83. The solid and dashed lines result from Eq. (3.12). It has

been assumed for the solid line that the vibrations of the membrane are described by the



function cosinus and for the dashed line by the function sinus. The remaining lines have been
plotted from the following expression

koa)* | jo(koa) | Ji(2koly) 1 1 cosm
911,115( 02) lo(ed) , hKory + 12(2koly) ) =9 . v
Bii koa 2koly 0 0 sinmg

For the dashed-dotted line it has been assumed that the vibrations are described by the
cosinus function and for the dotted line by the sinus function

reactance y,, . for the mode pair (m, n) and (m’, n’) has been obtained from Eq. (3.10) by
integrating within the infinite limits (k, <7 <o). In the specific case when k,a<<1, the

modal radiation impedance &, o, = 6y on — 1 Lonon fOr the axisymmetric mode pair (0, n) and

mn,m'n'

0.01t —

-0.01

0.021 \

\\\\\

Fig.4 The modal mutual resistance of the membrane mode (2,1) and its mirror image mode
(0,1) as a function of the parameter koa/fg,, for I,/a=3, f, =2.41 and S, =5.14. The solid

line— results from Eq. (3.12), the dashed line the results from the following expression

2 (koa)* . 1
921’01 E%(ﬂzol?m 12(2k0IY){0}

mn,m'n’

0.6+

0.4+

0.2 1

0.4 O..G : 0:8
kOa / an
Fig.5 The sum of the modal radiation self-resistance (2,1) and the modal mutual
resistance of the membrane mode (2,1) and its mirror image mode (2,1) as a function of
the parameter kja/f,, for I,/a=3 and S, =5.14. The solid and dashed lines result from



Eq. (3.12). It has been assumed for the solid line that the vibrations of the membrane are
described by function cosinus and for the dashed line by function sinus. The remaining
lines have been plotted from the following expression

ol j j, (2Kl j5 (2k,! 1 1
0,10 = (koa) Jz(koa)+ J2(2k, y)$ 132k, y)+ j4(2k0|y){ H, { }:){c?sm¢}
’ 0 0 sinme

45 | (@) (2koly)*  2Kkly

For the dashed-dotted line it has been assumed that the vibrations are described by the
cosinus function and for the dotted line by the sinus function.

S]

mn,m'n’

0.012

0.0008+

0.0044

0.002-

l/a6

y

Fig.6 The modal radiation resistance as a function of the parameter |, /a.

The solid line - the sum of the modal radiation self-resistance (1,1) and the modal mutual
resistance of the membrane mode (1,1) and its mirror image mode (1,1) for k,a/8,, =0.2.
The dashed line - the sum of the modal radiation self-resistance (2,1) and the modal
mutual resistance of the membrane mode (2,1) and its mirror image mode (2,1) for
Koa/ By =0.2.

The curves have been plotted by using the formulae from the legends of Fig. 3 and

Fig.5 and it has been assumed that the vibration of the membrane is described by sinus
function.

(0, n”) has been approximated in Eq. (4.9) which contains the spherical Hankel functions of
the first kind and the zero order, only.

Within the high frequency range (k,a > f,,), the modal radiation resistance &

mn,m'n'

can

be approximated by exchanging the integral in Eq. (3.10) by the corresponding path integral,
and further by computing the remainders at the poles of the integrand as well as by using the
asymptotic method of computing the integrals. The modal radiation reactance y,,, ., can be

approximated using the stationary phase method (cf. [5]).
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APPENDIX A

The values of the following integrals are necessary

=2 | cos(mat) cos(m'al) n |2/¢,
I1 = ql .[ . . ' da’ = _ql 6mm' > (A'l)
o |sin(mo)sin(m'o) 4 |1
n/2 . cos(mat)cos(m'a)
I, =q, [ cos(21l, cosa)cos(21l sina)y . . do, (A.2)
0 ! sin(ma)sin(m'o)
/2 . cos(ma)cos(m'a)
I, =q, | sin(21l, cosa)cos(21l sina)q . , (A.3)
0 sin(mo)sin(m'a)

where

m,m’=0,1,2,..., 1, =lcosB, 1, =lIsinf oraz q, :%[1+(—1)m+m'], q, :%[1-(-1)'“”“‘]. (A.4)

The integrals |, and |, computed within the limits (0, n/2) have been exchanged by

the corresponding integrals computed within the limits (0, )

i o(00)dou = %H o(oda+ [g(n— oc)da} ,

n/2

giving

ﬂizg(a)doc = %Ig(a)doc .



Applying the following Fourier series [8]

cos(ucos) = %issis [1+(=1)'[J, (u)cos(sp),

sin(ucos @) = —i‘,i”’ [I-(=1)"JJ (u)cos(sp),

has made it possible to obtain the following values of the integrals

I,=ql I,=-q,l (A.S5)
where it has been denoted

(21l) £ cos(m+m")BJ .2}, (A.6)

m-m'

[= %i‘“*‘“’ {(—1)‘“' cos(m—m")BJ

and the plus sign in the symbol =*is related to the functions cos mo and cos m’a for
m, m’=0,1,2,... whereas the minus sign is related to the functions sin ma and sin m’a for
m, m’=1,2,...

While computing the integral in Eq. (4.3) the following more general formula has been
used [7]

n+p
Xv+2n+1 (a2 _XZ)B—IJV(CX)dX :%(V+I)HF(B)a2n+2B+V(£j

ac
. (-D* (0} ac)’
ngo(v +1)k [kj( 2 j Jk+n+B+v (aC),

! ]
where a>0, Re >0, Rev>n-1, (v+1), :(V+k)', 1 =L,and
V! k) kl(n—k)!

oS —_w

(A.7)

Ja.(X)=, /21Jm”2 (x) 1s the spherical Bessel function of the orderm =0, 1, 2,...
X

APPENDIX B

A detailed vibration analysis of the circular membrane has been presented in [3]. The
equation of motion of the excited membrane including the acoustic attenuation in its
amplitude form is

(VZ+KHW (r,p) =—f(r,p)/T — p(r,p)/T , (B.1)

1 o°

r’ op*’
density of the membrane material, @ is the circular frequency of the excitation
f(r,p)exp(—iwt), f(r,p) is the excitation amplitude and p(r,p) is the amplitude of the

acoustic pressure radiated by the membrane. It has been assumed that the radiation of the
bottom side of the membrane (i.e. for z < 0) is suppressed.
The solution of Eq. (B.1) has been formulated as

where V° :lg(r§)+ w’c /T =k?, T is the stretching force, o is the surface
r r



W(r.g) =S cWo (1.0), (B2)

m=0 n=1

and the corresponding eigenfunctions satisfying the equation (K 2V +DW__(r,p) =0 of the

mode (m,n) are

J_(k_r) [cos(m go)
W, () = \/_ nnl) { (B.3)
m+1 (ﬂmn ) Sln(m(D)
The eigenfunctions have been normalized by
alr
[ W (1, 0W, (1, @)1 drdp = 78°5 1,5, (B-4)
00

where ¢, =1, ¢, =2 for m>1, and g, =k,,a being the root of the frequency equation

I (Bwn) = 0.

The equation of motion (B.1) has been rearranged and formulated as the following set
of algebraic equations [3]
[k
Cn

where &'= p,C/ow determines the acoustic attenuation, and

J—i_l‘g'iicmné/mn mn — 'mn> (BS)

0 n=1

f (B.6)

mn — m'n’

Applying the set of algebraic equations (B.5) and the formulation of the modal radiation
resistance & leads to the following formulation for the total sound power radiated

csselfib]

mn.m'n’

=ip,C



