PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An assessment of cleaning mechanisms driven by power ultrasound using electrochemistry and highspeed imaging techniques

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The cleaning of a surface is monitored in real time using a number of physical measurements. In particular an electrochemically inactive material is removed from an electrode while the electrode is able to detect a redox system in the bulk liquid. The removal of the material from the surface is monitored as an increased Faradaic current at the electrode surface. This signal is used to assess the ability of the cleaning method employed, in this case the application of power ultrasound to the system, as a function of the position of the electrode with respect to the sound source. It is shown that, depending on the conditions employed, surface cleaning is driven by different mechanisms. In order to validate these findings highspeed imaging of the system was undertaken and the results correlated with the electrochemical data. In addition a number of novel electrodes were also employed to assess the cleaning efficiency as a function of the electrode geometry employed. Implications for surface cleaning in the presence of power ultrasound are suggested.
Czasopismo
Rocznik
Tom
Strony
299--312
Opis fizyczny
Bibliogr. 25 poz., rys., wykr.
Twórcy
autor
autor
autor
autor
  • School of Chemistry, University of Southampton Highfield, Southampton, SO17 1BJ, UK, prb2@soton.ac.uk
Bibliografia
  • 1. L. E. Kinsler, A. R. Frey, A. B. Coppens and J. V. Sanders, Fundamentals of Acoustics, John Wiley & Sons, 1982 New York.
  • 2. P. M. Morse and K. U. Ingard, Theoretical Acoustics, Princeton University Press, 1986 New York.
  • 3. P. R. Birkin, T. G. Leighton, J. F. Power, M. D. Simpson, A. M. L. Vinçotte and P. F. Joseph, Experimental and Theoretical Characterisation of Sonochemical Cells. Part 1. Cylindrical Reactors and Their Use to Calculate the Speed of Sound in Aqueous Solutions., Journal of Physical Chemistry A, 107, 2003.
  • 4. P. R. Birkin, D. G. Offin and T. G. Leighton, Experimental and theoretical characterisation of sonochemical cells - Part 2 Cell disruptors (Ultrasonic horns) and cavity cluster collapse, PCCP, 7, 2005.
  • 5. T. G. Leighton, The Acoustic Bubble, Academic Press, 1994 London.
  • 6. P. R. Birkin, T. G. Leighton and Y. E. Watson, Applications of Power Ultrasound in Physical and Chemical Processing 4, Besançon, 2003.
  • 7. H. G. Flynn, Cvaitation Dynamics I. A mathematical formulation, Journal of the Acoustics Society of America, 57, 1975.
  • 8. R. E. Apfel, Cavitation and Inhomogeneities in underwater acoustics, Gottingen, 1980.
  • 9. R. E. Apfel, in Methods in Experimental Physics, ed. P. D. Edmonds, Academic Press, New York, 1981, vol. 19.
  • 10. C. K. Holland and R. E. Apfel, An Improved Theory for the Prediction of Microcavitation Thresholds, IEEE Transactions Ultrasonics Ferroelectrics and Frequency Control, 36, 1989.
  • 11. E. B. Flint and K. S. Suslick, The Temperature of Cavitation, Science, 253, 1991.
  • 12. K. S. Suslick, D. A. Hammerton and R. E. Cline, The Sonochemical Hotspot, Journal of the American Chemical Society, 108, 1986.
  • 13. P. R. Birkin, D. G. Offin and T. G. Leighton, Experimental and theoretical characterisation of sonochemical cells. Part 2: cell disruptors (Ultrasonic horns) and cavity cluster collapse, Phys. Chem. Chem. Phys., 7, 2005.
  • 14. B. Vyas and C. M. Preece, Stress produced in a solid by cavitation, Journal of Applied Physics, 47, 1976.
  • 15. G. O. H. Whillock and B. F. Harvey, Ultrasonically enhanced Corrosion of 304L Stainless Steel II: The effect of frequency, acoustic power and horn to specimen distance., Ultrasonics Sonochemistry, 4, 1997.
  • 16. G. O. H. Whillock and B. F. Harvey, Ultrasonically enhanced corrosion of 304L stainless steel I: The effect of temperature and hydrostatic pressure., Ultrasonics Sonochemistry, 4, 1997.
  • 17. P. R. Birkin, R. O'Connor, C. Rapple and S. Silva-Martinez, Electrochemical measurement of erosion from individual cavitation generated from continuous ultrasound, Journal of the Chemical Society Faraday Transactions, 94, 1998.
  • 18. P. R. Birkin, D. G. Offin and T. G. Leighton, The study of surface processes under electrochemical control in the presence of inertial cavitation, Wear, 258, 2005.
  • 19. C. J. B. Vian, A comparison of measurement techniques for acoustic cavitation, PhD, University of Southampton, 2007.
  • 20. I. Hansson, V. Kedrinskii and K. A. Morch, On the dynamics of cavity clusters, Journal of Physics D: Applied Physics, 15, 1982.
  • 21. I. Hansson and K. A. Morch, The dynamics of cavity clusters in ultrasonic (vibratory) cavitation erosion, Journal of Applied Physics, 51, 1980.
  • 22. P. R. Birkin, D. G. Offin, P. F. Joseph and T. G. Leighton, Cavitation, shock waves and the invasive nature of sonoelectrochemistry, Journal Of Physical Chemistry B, 109, 2005.
  • 23. D. G. Offin, An investigation of fast surface re-formation in the presence of inertial (transient) cavitation, PhD, University of Southampton, 2006.
  • 24. F. Marken, J. C. Eklund and R. G. Compton, Voltammetry in the presence of ultrasound, Journal of Electroanalytical Chemistry, 395, 1995.
  • 25. H. H. Zhang and L. A. Coury, Effects of High-Intensity Ultrasound on Glassy-Carbon Electrodes, Analytical Chemistry, 65, 1993.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWMA-0018-0028
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.