PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Statistical properties of pulse-echo signal backscattered in trabecular bone

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper considers the application of statistical properties of backscattered ultrasonic signal for assessment of the trabecular bone status. Computer simulations were conducted to investigate the properties of the ultrasound pulse-echo signal, as it is received on the transducer surface after scattering in trabecular bone. Results indicated that while for the well-defined trabeculae properties within the simulated bone structure the signal envelope values are Rayleigh distributed the significant departures from Rayleigh statistics may be expected as the thickness of trabeculae become random. The influence of the altering of mechanical properties of the bone tissue building the trabeculae on the signal statistical parameters was unnoticeable. The initial experiments confirming some cases of departure from Rayleigh statistics for envelopes of backscattered signals are also discussed.
Czasopismo
Rocznik
Tom
Strony
253--264
Opis fizyczny
Bibliogr. 22 poz., rys., wykr.
Twórcy
  • Institute of Fundamental Technological Research Swiętokrzyska 21, 00-049 Warszawa, Poland, jlitn@ippt.gov.pl
Bibliografia
  • 1. S. Chaffai, V. Roberjot, F. Peyrin, G. Berger, P. Laugier, Frequency dependence of ultrasonic backscattering in cancellous bone: Autocorrelation model and experimental results, J. Acoust. Soc. Am., 108, 5, pp. 2403-2411, 2000.
  • 2. P. Laugier, P. Giat, C. Chappard, Ch. Roux, G. Berger, Clinical assessment of the backscatter coefficient in osteoporosis, IEEE Ultrasonic Symposium, pp.1101-1105, 1997.
  • 3. P. Laugier, F. Padilla, E. Camus, S. Chaffai, C. Chappard, F. Peyrin, M. Talmant, G. Berger, Quantitative ultrasound for Bone Status Assessment, IEEE Ultrasonic Symposium Proceedings, 2, pp. 1341-1350, 2000.
  • 4. F. Padilla, F. Peyrin, P. Laugier, Prediction of backscattered coefficient in trabecular bones using a numerical model of tree-dimensional microstructure, J. Acoust. Soc. Am., 113, 2, pp. 1122-1129, 2003.
  • 5. K. Wear, B. Garra, Assessment of bone density using ultrasonic backscatter, Ultrasound Med Biol., 24(5), pp. 689-695, 1998.
  • 6. K. Wear, Frequency dependence of ultrasonic backscatter from human trabecular bone: Theory and experiment, J. Acoust. Soc. Am., 106(6), pp. 3659-3664, 1999.
  • 7. J. Bamber, C. Hill, J. King, Acoustic properties of normal and cancerous human liver, Ultrasound Med. Bio, l7, pp. 121-133, 1981.
  • 8. F. L. Lizzi, M. Ostromogilsky, I. Feleppa, M. Rotke, M. Yaremko, Relationship of ultrasound spectral parameters to features of tissue microstructure, IEEE trans. UFFC, 33, pp. 319-328, 1986.
  • 9. J. Saniie, N. M. Bilgutay, Quantitative grain size evaluation using ultrasonic backscattered echoes, J. Acoust. Soc. Am., 80(6), pp. 1816-1824, 1986.
  • 10. J. Goodman, Statistical Optics, John Wiley & Sons, 1985
  • 11. M. Shankar, A general statistical model for ultrasonic backscattering from tissue, IEEE trans. on UFFC, 47, 3, pp. 727-736, 2000.
  • 12. R. Wagner, M. Insana, D. Brown, Statistical properties of radio-frequency and envelope-detected signals with applications to medical ultrasound, J. Opt. Soc. Am., 4 (5), pp. 910-922, 1987.
  • 13. J. Kanis, Osteoporosis, Oxford: Blackwell Science ,1994
  • 14. L. Flax, G. C. Gaunaurd, H. Uberall, Theory of resonance scattering, In Mason W.P., Thurston R.N., eds., Physical Acoustics, 15, Academic Press, pp. 191-294, 1981.
  • 15. P. Saha, F. Wehrli, Measurement of Trabecular Bone Thickness in the Limited Resolution Regime of In Vivo MRI by Fuzzy Distance Transform, IEE trans. Medical Imaging, 23, pp. 53-62, 2004.
  • 16. A. Hosokawa, T. Otani, Ultrasonic wave propagation in bovine cancellous bone, J. Acoustic Soc. Am., 101, pp. 558-562, 1997.
  • 17. J. Litniewski, Determination of the elasticity coefficient for a single trabecula of a cancellous bone: Scanning Acoustic Microscopy approach., Ultrasound Med Biol, , 31, 10, pp. 1361-1366, 2005.
  • 18. D. Dagan, M. Be'ery, A. Gefen, Single-trabecula building-block for large-scale finite element models of cancellous bone, Medical & Biological Engineering & Computing, 42, pp. 549-556, 2004.
  • 19. K. Wear, The effect of trabecular material properties on the frequency dependence of backscatter from cancellous bone, J. Acoust. Soc. Am., 113(4), 1, pp. 62-65, 2003.
  • 20. J. Litniewski, A. Nowicki, Z. Klimonda, M.Lewandowski, Sound Fields for Coded Excitations in Water and Tissue: Experimental Approach, Ultrasound in Medicine and Biology, 33, 10, pp. 601-607, 2007.
  • 21. J. Jensen, S. Leeman, Non-parametric estimation of ultrasound pulses, IEEE Trans. on Biomedical Engineering, 41, 10, pp. 926-936, 1994.
  • 22. R. Wagner, S. Smith, J. Sandrik, H. Lopez, Statistics of speckle in ultrasound B-scans, IEEE Trans on Sonics Ultrasonics, 30(3), pp. 156-163, 1983.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWMA-0018-0024
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.