PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The development of a passive acoustic device for monitoring the effectiveness of shockwave lithotripsy in real time

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper reports how laboratory experiments and hydrocode simulations (of cavitation and shock wave propagation) have been used to generate a clinical device which can deliver real benefit to patients with kidney stones. Currently X-ray or ultrasound B-scan imaging are used to locate the stone and to check that it remains targeted at the focus of the lithotripter during treatment. Neither imaging method is particularly effective in allowing the efficacy of treatment to be judged during the treatment session. In this study, laboratory experiment and Computational Fluid Dynamics simulations of the complex interactions between the shock wave, the stone, and the human tissue, have been used to develop a new clinical device. This device, which has been tested in clinical trials, exploits the passive acoustic emissions generated by these interactions, to identify whether the stone remains in the focus, and to what extent the treatment has been successful.
Czasopismo
Rocznik
Tom
Strony
159--180
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
autor
autor
autor
autor
autor
autor
autor
autor
autor
  • Institute of Sound and Vibration Research, University of Southampton, Highfield, Southampton SO17 1BJ, UK, tgl@soton.ac.uk
Bibliografia
  • 1. C. Chaussy and E. Schmiedt, " Shock wave treatment for stones in the upper urinary tract," J. Urol. Clin. North Am. , vol. 10, pp. 743-750, 1983.
  • 2. Y. M. Tan, S. K. Yip, T. W. Chong, M. Y. Wong, C. Cheng, and K. T. Foo, "Clinical experience and results of ESWL treatment of 3,093 urinary calculi with the Storz Modulith SL 20 lithotripter at the Singapore general hospital," Scand. J. Urol. Nephrol., vol. 36, pp. 363-367, 2002.
  • 3. B. Auge and G. Preminger, "Update on shockwave lithotripsy technology," Curr. Opin. Urol., vol. 12, pp. 287-290, 2002.
  • 4. J. E. Lingeman, D. M. Newman, H. H. O. Mertz, Ph. G. Mosbaugh, R. E. Steele, P. M. Knapp, and W. Shirell, "Management of upper ureteral calculi with ESWL," in IV World Congress on Endurology and ESWL Madrid 1986.
  • 5. D. Tolley and P. Downey, "Current advances in shock wave lithotripsy," Curr. Opin. Urol., vol. 9, pp. 319-323, 1999.
  • 6. A. Skolarikos, G. Alivizaos, and J. de la Rosette, "Extracorporeal shock wave lithotripsy 25 years later: complications and their prevention," Eur. Urol. , vol. 50, pp. 981-990, 2006.
  • 7. T. G. Leighton, F. Fedele, A. J. Coleman, S. Ryves, C. McCarthy, A. M. Hurrell, A. D. Stefano, and P. R. White, "A device for monitoring the efficacy of ESWL using passive acoustic emissions, Ultrasound in Medicine and Biology," Ultrasound in Medicine and Biology (in press), 2008
  • 8. D. Delakas, I. Karyotis, G. Daskalopoulos, E. Lianos, and E. Mavromanolakis, "Independent predictors of failure of shockwave lithotripsy for ureteral stones employing a second-generation lithotripter," J. Endourol., vol. 17, pp. 201-205, 2003.
  • 9. M. A. Gomha, K. Z. Sheir, S. Showky, M. Abdel-Khalek, A. A. Mokhtar, and K. Madbouly, "Can we improve the prediction of stone-free status after extracorporeal shock wave lithotripsy for ureteral stones? A neural network or statistical model?," J. Urol. , vol. 172, pp. 175-179, 2004.
  • 10. M. A. Warner, M. E. Warner, C. F. Buck, and J. W. Segura, "Clinical efficacy of high frequency jet ventilation during extracorporeal shock wave lithotripsy of renal and ureteral calculi: a comparison with conventional mechanical ventilation," J. Urol., vol. 139, pp. 486-487, 1988.
  • 11. A. J. Coleman, M. J. Choi, J. E. Saunders, and T. G. Leighton, "Acoustic emission and sonoluminescence due to cavitation at the beam focus of an electrohydraulic shock wave lithotripter," Ultrasound in Medicine and Biology, vol. 18, pp. 267-81, 1992.
  • 12. S. Madaan and A. D. Joyce, "Limitations of extracorporeal shock wave lithotripsy," Curr. Opin. Urol. , vol. 17, pp. 109-113, 2007.
  • 13. R. M. Schmitt, H. Wuster, W. Kraus, and M. Bibinger, "The effects of errors in positioning lithotripter and imaging kidney stones ultrasound," in Proceedings of the Annual international conference of the IEEE Engineering in Medicine and Biology Society 1990, pp. 252-253.
  • 14. P. Sandilos, I. Tsalafoutas, G. Koutsokalis, P. Karaiskos, E. Georgiou, E. Yakoumakis, and L. Vlahos, "Radiation doses to patients from extracorporeal shock wave lithotripsy " Health Phys., vol. 90, pp. 583-587, 2006.
  • 15. A. J. Coleman, M. Whitlock, T. G. Leighton, and J. E. Saunders, "Spatial distribution of cavitation induced acoustic emission, sonoluminescence and cell lysis in the field of a shock wave lithotripter," Physics in Medicine and Biology, vol. 38, pp. 1545, 1993.
  • 16. T. G. Leighton, The Acoustic Bubble. London: Academic Press, 1994.
  • 17. T. G. Leighton, "From seas to surgeries, from babbling brooks to baby scans: the acoustics of gas bubbles in liquids," International Journal of Modern Physics B, vol. 18, pp. 3267-314, 2004.
  • 18. C. K. Turangan, A. R. Jamaluddin, G. J. Ball, and T. G. Leighton, "Free-Lagrange simulations of the expansion and jetting collapse of air bubbles in water," Journal of Fluid Mechanics, vol. 598, pp. 1-25, 2008.
  • 19. T. G. Leighton, A. J. Coleman, F. Fedele, and P. R. White, "A passive acoustic system for evaluating the in-vivo performance of extracorporeal shockwave lithotripsy." UK Patent Num. 0319863.7, 2004.
  • 20. F. Fedele, A. J. Coleman, T. G. Leighton, P. R. White, and A. M. Hurrell, "A new sensor for detecting & characterising acoustic cavitation in vivo during ESWL," in Proceedings of the Institute of Acoustics. vol. 26(1), 2004, pp. 422-432.
  • 21. F. Fedele, A. J. Coleman, T. G. Leighton, P. R. White, and A. M. Hurrell, "A new sensor for detecting and characterising acoustic cavitation in vivo during ESWL," Acoustics Bulletin, vol. 29, pp. 34-39, 2004.
  • 22. F. Fedele, A. J. Coleman, T. G. Leighton, P. R. White, and A. M. Hurrell, "Development of a new diagnostic device for Extracorporeal Shock-Wave Lithotripsy," in Proceedings of the X Mediterranean Conference on Medical and Biological Engineering "Health in the Information Society" (IFMBE Proceedings volume). vol. 6, paper no. 54, 2004 (4 pages).
  • 23. F. Fedele, A. J. Coleman, T. G. Leighton, P. R. White, and A. M. Hurrell, "Development of a new diagnostic sensor for extracorporeal shock-wave lithotripsy," Journal of Physics: Conference Series, vol. 2, pp. 125-30, 2004.
  • 24. F. Fedele, "Acoustic sensing of renal stones fragmentation in extracorporeal shockwave lithotripsy," in PhD thesis, University of Southampton: Southampton, 2008 (submitted).
  • 25. K. B. Cunningham, A. J. Coleman, T. G. Leighton, and P. R. White, "Characterising in vivo acoustic cavitation during lithotripsy with time-frequency methods," Acoustics Bulletin, vol. 26, pp. 10-16, 2001.
  • 26. T. G. Leighton, B. T. Cox, and A. D. Phelps, "The Rayleigh-like collapse of a conical bubble," Journal of the Acoustical Society of America, vol. 107, pp. 130-142, 2000.
  • 27. T. G. Leighton, W. L. Ho, and R. Flaxman, "Sonoluminescence from the unstable collapse of a conical bubble," Ultrasonics, vol. 35, pp. 399-405, 1997.
  • 28. T. G. Leighton, B. T. Cox, P. R. Birkin, and T. Bayliss, "The Rayleigh-like collapse of a conical bubble: Measurements of meniscus, liquid pressure, and electrochemistry," in Proceedings of the 137th Regular Meeting of the Acoustical Society of America and the 2nd Convention of the European Acoustics Association (Forum Acusticum 99, integrating the 25th German Acoustics DAGA Conference), 1999, Paper 3APAB_1.
  • 29. A. R. Jamaluddin, "Free-Lagrange simulations of shock–bubble interaction in ESWL." PhD: University of Southampton, 2006.
  • 30. G. J. Ball, B. P. Howell, T. G. Leighton, and M. J. Schofield, "Shock-induced collapse of a cylindrical air cavity in water: a Free-Lagrange simulation," Shock Waves, vol. 10, pp. 265-76, 2000.
  • 31. G. J. Ball, B. P. Howell, T. G. Leighton, and M. J. Schofield, "Shock-induced collapse of a cylindrical air cavity in water: a Free-Lagrange simulation," in The 22nd International Symposium on Shock Waves London, 2000, pp. 1363-1368.
  • 32. A. R. Jamaluddin, G. J. Ball, and T. G. Leighton, "Free-Lagrange simulations of shock/bubble interaction in shock wave lithotripsy," in The 24th International Symposium on Shock Waves Beijing, China, 2004, pp. 1211-1216.
  • 33. A. R. Jamaluddin, G. J. Ball, and T. G. Leighton, "Free-Lagrange simulations of shock/bubble interaction in shock wave lithotripsy," in Proceedings of the Second International Conference on Computational Fluid Dynamics, ICCFD, Sydney, Australia, 2002, pp. 541-546.
  • 34. T. G. Leighton, P. R. Birkin, M. Hodnett, B. Zeqiri, J. F. Power, G. J. Price, T. Mason, M. Plattes, N. Dezhkunov, and A. J. Coleman, "Characterisation Of Measures Of Reference Acoustic Cavitation (COMORAC): An experimental feasibility trial," in Bubble and Particle Dynamics in Acoustic Fields: Modern Trends and Applications, A. A. Doinikov, Ed. Kerala: Research Signpost, 2005, pp. 37-94.
  • 35. B. Zeqiri, P. N. Gelat, M. Hodnett, and N. D. Lee, "A novel sensor for monitoring acoustic cavitation. Part II: prototype performance evaluation," IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 50, pp. 1351-1362, 2003.
  • 36. F. Fedele, A. J. Coleman, and T. G. Leighton, "Use of a cylindrical PVdF hydrophone in a study of cavitation adjacent to stone phantoms during extracorporeal shockwave lithotripsy," in Proc of the 9th Annual National Conference of the Institute of Physics and Engineering in Medicine Bath, 2003, pp. 66.
  • 37. A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochastic processes. Singapore: McGraw-Hill., 2001.
  • 38. N. R. Owen, M. R. Bailey, L. A. Crum, O. A. Sapozhnikov, and L. A. Trusov., "The use of resonant scattering to identify stone fracture in shock wave lithotripsy. ," J Acoust Soc Am, vol. 121, pp. EL41–EL46, 2007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWMA-0018-0019
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.