
DESIGN AND IMPLEMENTATION FIR FILTERS USING FPGA

SŁAWOMIR JASTRZĘBSKI

University of Technology and Life Sciences
ul. Kordeckiego 20, 85-225 Bydgoszcz, Poland

sj@utp.edu.pl

Underwater acoustic channels are characterized by multipath phenomenon whose
characteristics are time varying. Multipath propagation contributes to signal fading, and
causes intersymbol interference (ISI) in a digital communication system.

Raised cosine filters are widely used in wireless communication systems and the effects
of these filters are crucial to wireless communication systems, for example underwater
communication systems. Pulse shaping filters are commonly used in digital data
communication systems to limit intersymbol interference. Thus, digital filters have been
recognized as primary digital signal processing operation. In order to apply DSP algorithms
to wireless communication systems high density Field Programmable Gate Arrays have
recently emerged as ideal implementation platforms for digital filters due to its potential
speed and flexibility.

This paper presents the design and implementation of FIR filters using FPGA
technology. The following architectures of filters are studied: multiply and accumulate (MAC)
standard FIR filter, parallel transposed FIR filter, and direct-form filter using Distributed
Arithmetic (DA). The proposed filters have been designed and synthesized with ISE software,
and implemented with a Virtex-II FPGA device.

INTRODUCTION

Many digital systems use signal filtering to remove unwanted noise to provide spectral
shaping, or to perform signal detection or analysis. Filters are used with communication
applications such as band selection and low-pass filtering. Two types of filters that provide
these functions are FIR and IIR filters. FIR filter is the foundational element of DSP. FIR
filters can be used in systems that require a linear phase and have an inherently stable
structure.

In digital communication, matched filters are widely used in wireless communication
systems and the effects of these matched filters are crucial to wireless communication systems. In
order to improve the performance the matched filter must be designed in digital methods.
Because of FIR filters’ linear phase characteristics, they are widely used in matched filters
design. The amplitude frequency response of a FIR filter can match that of a matched filter in
precise accuracy, which will decrease the introduced noise and improve the performance of the
wireless communication system. However, the working speed of the digital FIR matched filters is
often relatively lower than other components in the wireless communication system and it is
relatively difficult for the wireless communication system with such digital FIR filters to work at
a high sampling rate. In digital underwater communication, pulse-shaping filters allow the
transmission of pulses with negligible intersymbol interference. Therefore, these filters must have
a frequency response with sufficient selectivity and attenuation to suppress noise and interference
in adjacent channels.

Recently, a large number of researchers have focused on their interests on the FIR filters
and their implementation in FPGAs, which are increasingly becoming the implementation
platform of choice for high-speed DSP systems. Progress in development of programmable
architectures observed in recent years resulted in digital devices that allow building very complex
digital circuits and systems at relatively low cost in a single programmable structure.
Programmable technology provides possibility to increase the performance of digital system by
implementation of multiple, parallel modules in one chip. Due to the advantages of versatility,
flexibility, large scale of FPGA, a number of applications in digital system designing based on
FPGA have been developed for telecommunications, controlling and information processing
system. FIR digital filters were modeled with VHDL coding and synthesized using Xilinx
Synthesis Technology (XST) software and then implemented on Xilinx Virtex-II FPGA chip
using Xilinx ISE Foundation. The functional simulations and post-timing simulations were
performed in the verification step using Modelsim software.

1. FIR FILTER ARCHITECTURES

The structure of a FIR filter is a weighted, tapped delay line. The filter design process
involves identifying coefficients that match the frequency response specified for the system. The
coefficients determine the response of the filter. By changing the coefficient values or by adding
more coefficients to the filter, we can change the signal frequencies, which pass through the
filter. A discrete-time linear finite impulse response filter generates the output y[n] as a sum of
delayed and scaled input samples x[n]. This process is formally described by following formula:

∑
−

=

−=
1

0

K

k
k]h[k]x[ny[n] (1)

where h[k] are filter's coefficients.
A direct implementation requires K multiply and accumulates (MAC) operations, which are
expensive to implement in hardware due to logic complexity and area usage. Fig. 1 shows the
direct form FIR filter.

Register Register Register

 h(0)

+ + + +

x

y

 (2) h h(n) h(1)

Fig.1 Direct form FIR filter

Multiplications are the critical operation in any DSP algorithm. Bit-serial and serial-parallel
techniques provide a convenient trade-off between size and speed of a multiplier. When speed of
operation is a design issue, parallel array multipliers have to be considered. FIR filters can be
implemented in different structures. The following architectures of filters are studied in this
section: multiply and accumulate (MAC) standard FIR filter, parallel transposed FIR filter, and
direct-form FIR filter using Distributed Arithmetic. Typically, the FIR filter function is based on
a MAC operation.

1.1 MAC UNIT REALIZATION

The base of many DSP algorithms is a MAC function. The multiply accumulate block is
comprised of a multiplier and accumulator block. The multiplier computes the product of a filter
tap and a sample from the data buffer, and the accumulator computes a running sum of these
products. MAC function uses a conventional sequential shift-and-add technique to multiply one
number by another and sum the results (Fig. 2). The multiplier can be implemented either in the
different form of RTL structures or using embedded multipliers.

Register+

x
y

Shift register

 FIFO register

 Accumulator

Fig.2 Direct form FIR filter using single MAC block

The accumulator is configured to reinitialize upon reset to its current input value to avoid a one-
clock cycle stall at the end of each sum-of-products computation. A register captures the output
of the MAC engine before it is reset. Alternatively, the MAC operations may be replaced by a
series of look-up-table (LUT) accesses and summations, known as Distributed Arithmetic [1],
[2], [3].

1.2. DISTRIBUTED ARITHMETIC REALIZATION

DA is a well-known method to save resources in MAC structures utilized to implement
DSP functions. In many DSP applications, a general-purpose multiplication is not required. DA is

a bit-serial operation that implements a series of fixed-point MAC operations in a fixed number
of steps, regardless of the number of terms to be calculated. This arithmetic trades memory for
combinatory elements, resulting ideal to implement custom DSP in LUT-based FPGAs. In a DA
bit-serial implementation of a FIR filter, each product term is addressed once per bit. After the
last product-term has been obtained, it is added with its appropriate shift with the rest of the
product term previously added. The structure that represents the 4-tap FIR filter using Distributed
Arithmetic is showed in Fig. 3.

Shift
register

x

1/2

Register

+

+
MS

LS

y

Reg

 H3 2 1 0h h h data
0000 0
0001 H
0010 H
0011 H + H
0100 H
0101 H + H
0110 H + H
0111 H + H + H
1000 H
1001 H + H
1010 H + H
1011 H + H + H
1100 H + H
1101 H + H + H
1110 H + H + H

 1111 H + H + H + H

0

1

0 1

2

0 2

1 2

0 1 2

3

0 3

1 2

0 1 3

2 3

0 2 3

1 2 3

0 1 2 3

Shift
register

Shift
register

Shift
register

Accumulator

Fig.3 LUT-based DA implementation of a 4-tap FIR filter

1.3 TRANSPOSED FORM FIR FILTER

Another form of FIR filter is structure called the transposed FIR filter (Fig. 4). The
transposed FIR yields an identical mathematical response but with several advantages for FPGA
implementation. This filter utilizing the same resources, but data samples are applied in parallel
to all the tap multipliers. The input registers are not required, because high fan-out input signals
can be handled by the Virtex-II architectures. In the transposed FIR filter, identical tap coefficient
magnitudes can share multiplication hardware because taps receive the input sample
simultaneously. The products are applied to a cascaded chain of registered adders, combining the
effect of accumulators and registers. The order of tap coefficients must be reversed with the first
tap closest to the output. Traditional FIR filters are implemented in dedicated hardware without
any parallelism, thus limiting the sample rate. The Virtex-II FPGAs have abundant hardware
resources to facilitate full parallelism. In a parallel implementation of a filter, each tap has a
dedicated multiplier.

 h(1) h(2) h(0)

+ + + +

x

y
Register

 h(n)

Register Register

Fig.4 Transposed form FIR filter

2. FPGA IMPLEMENTATION RESULTS

The described FIR filter models have been implemented in very high speed integrated
circuit (VHSIC) hardware description language (VHDL). VHDL is a kind of language for
describing VHSIC in IEEE standards. It has been widely used in deigning VHSIC due to its
distinct advantages. The FIR filters were implemented on RTL and structural level. The model
supports generic parameters so that word length and filter length can be adjusted to the
application requirements. All implemented filters have 16 taps, 16-bits inputs, 16-bit signed
coefficients, and were targeted to Virtex-II XC2V1000 device.

First implementation of FIR filter was serial structure consists of a shift register, multiplier
and an adder. This serial MAC form filter was shown in Fig. 5.

 Shift
register16

CLK

TCAM
16

X_Sig

16

H_sig

FIFO

Counter

New_Data

Bit
ext.32

Mul_Out
FIR_IN

New_Data
+

+
35

Mul_Sig

Reg
Sum_Sig

35

Reg

35

Sum_Sig

FB_Sig

35

CLKNew_Data

CLK

FIR_OUT

35CLK
16

Accumulator

CLK

16

Fig.5 Block structure of direct form FIR filter using single MAC block

All these elements were implemented in the Xilinx FPGA Virtex-II device. Multipliers and
adders are the basic components of all digital filters. For multiplier performance improvement,
the features of the filter have to be carefully studied. The efficiency of the multiplier determines
the overall performance of the filter. Hence, the multiplier must be implemented for the best
possible performance. In this implementation, traditional two-variable multiplier (TCAM) [4] and
carry-lookahead adder [5] were used. Both multiplier and adder were modeled in VHDL on RTL
and structural level. The FIR filter coefficients are stored in FIFO register. The sequential use of
this single MAC engine limits the sample rate of an FIR filter, as each tap will require a MAC
instruction to be performed.

If very high sampling rates are required, full-parallel hardware must be used where every clock
edge feeds a new input sample and produces a new output sample. In this paper such filter was
implemented on FPGA using transposed FIR filter structure. Fig. 6 shows full-parallel, fixed-
coefficient transposed FIR filter structure which was realized in VHDL [6].

16

+

+
Reg

Data_Reg

CLK

KCM KCM

U2

+

+
Reg

KCM

+

+
Reg

FIR_IN
16

Sum_7

Mul_7

32
0

32
Mul_132

Mul_032
Bits extensions

1-bit extenstion

38

Sum_1

39

FIR_OUT
DCM

CLKx4

CLK

CLK CLK CLK

LOCKED

Fig.6 Block structure of transposed form FIR filter (parallel implementation)

The tap data is an input of multiplier, the other a constant coefficient. Since one input is a
constant, these multipliers are called Constant Coefficient Multipliers (KCM) [7], [8], [9].
Constant Coefficient Multiplier was implemented in FPGA device using the structural technique.
In this case LUT memory, store 16 partial products relating to the fixed coefficient and then use a
simple adder to combine these products. KCM’s are less than one third of the size of traditional
two-variable multiplier (Table 1). Fig. 7 shows the simple realization of KCM multiplier, but
pipelining and resource sharing of adders further enhance the performance of KCM structure.
Fig. 8 shows such multiplier block and this multiplier was used in fully-parallel transposed form
of FIR filter. Table 1 shows the results of logic slice utilization (Virtex-II XC2V1000 device) for
three different structures of multipliers. The FIR filter was built by utilizing the KCM blocks,
delay elements, adders and Digital Clock Manager (DCM) component. The FIR filter coefficients
are stored in ROM-based LUT.

+4 20

 LUT
16x20

 LUT
16x20

 LUT
16x20

 LUT
16x20

U2 Reg

DATA_IN
16

In_A [15:12]

In_A [11:8]

In_A [7:4]

In_A [3:0]

4

4

4

+

+

+

20

20

20

U2

U2

U2

U2

20

20

20

20

DATA_IN[15]

SIGN_COEFF

XOR

Sum_1 [3:0]

Sum_2 [3:0]

Sum_3 [3:0]

Sum_4

U2
Reg

MUL_OUT

‘0’

‘0’

‘0’

‘0’

CLK

 0*3
 1*3
 2*3
 3*3
 4*3
 5*3
 6*3
 7*3
 8*3
 9*3
10*3
11*3
12*3
13*3
14*3
15*3

Fig.7 Constant Coefficient Multiplier block diagram

U2 Reg

DATA_IN
16

In_A [0]

SIGN_COEFF XOR

Reg

MUL_OUT
CLK

In_A [4]

In_A [8]
In_A [12]

In_A [1]

In_A [5]

In_A [9]
In_A [13]

In_A [2]

In_A [6]

In_A [10]
In_A [14]

In_A [3]

In_A [7]

In_A [11]
In_A [15]

Reg

Addr [0]

Reg

Addr [1]

Reg

Addr [2]

Reg

Addr [3]

 LUT
16x20

4

Counter

2
Count

U2
20

Reg

20

U220 32
Sum

Sum[19:4]

Sum[3:0]

Reg RegReg 4 4 4

4

4

4

16

Shift_Sum

16
“00...00”

Reg Reg

Ready

Mul_Three_LSB

Mul_Two_LSB

Mul_One_LSB

0
0
0
0

15
0

16
17
18
19

Ready

CLK

CLK

CLK

CLK

CLK

CLK

ENABLE

Reg

CLKReg

CLK

Sign_Coeff_Reg

Sign_In_Reg

Sign_Value

32

CLK

Reg

CLK

Sign_In

Fig.8 Constant Coefficient Multiplier block diagram using in transposed form FIR filter

Tab.1 Virtex II (XC2V1000) logic slice utilization for three multipliers configuration

TCAM [4] KCM (Fig. 7) KCM (Fig. 8)

Maximum # % # %

%

SLICES 5120 253 4 158 3

106 2

The FPGA devices have the ability to implement a FIR filter function using Distributed
Arithmetic method. This technique was used to optimize the implementation of MAC-based
algorithm. The architecture of this filter was shown in Fig. 9. The FIR filter has one long bit-wide
shift register that taps into each word. The input data is loaded parallel into 16-bit register that
can shift its contents to the next register. A chain of 16 such registers was provided. Only the first
16-bit word is parallel loaded. The shift register then serially shifts out all the data-bits, 1-bit at a
time. The output bit from the shift register addresses 1-bit of a corresponding LUT, until the most
significant bit of n-bits has been clocked out. When the shifting is complete, the first data shift
register is empty and is ready to be parallel loaded with the next word and the process repeats.
This 16-tap FIR filter requires a 16-bit LUT. The optimum partition for four-input function
generators was four products per LUT. In this project four 4-bit (16-word) LUT memories were
used. The compilation results in the Xilinx ISE software show that the maximum clock frequency
of the filter could be over 104MHz. The detailed compilation results are listed in a Table 2. SDA
techniques results in area efficient design of an FIR filter.

Tab.2 Virtex-II (XC2V1000) logic slice utilization and performance for different FIR filter structures

SLICES
Used

Clock frequency
FIR Filter

Maximum

% MHz
MAC 5120 545 10 45

Transposed form 5120 614 11 24
SDA 5120 177 3 104

In a serial MAC based FIR realization, the sample throughput is coupled to the filter length.

The filter sample throughput is inversely proportional to the number of filter taps. As the filter
length is increased, the system sample rate is proportionately decreased. This is not the case with
serial DA based architectures. With DA architecture, the system sample rate is related to the bit
precision of the input data samples. For n-bit precision input samples, n clock cycles are required
to form a new output sample. The bit-clock frequency is greater than the filter sample rate fs and
is equal to nfs. The filter sample rate is not coupled from the filter length. As the filter length is
increased in a DA FIR filter, more logic resources are consumed, but throughput is maintained.
The performance for the 16-tap FIR filter implemented with a serial direct form MAC algorithm,
resulted in clock frequency about 45MHz, in 545 slices. The filter sample rate is
45MHz/16taps=2,8MHz. A parallel transposed 16-tap FIR filter, as shown in Figure 6, resulted
in a sample rate of 24MHz, in 614 slices. The filter design implemented in an FPGA with 16-bit
serial DA resulted in more than twice the performance (104MHz/16bits=6,5MHz) compared to
the direct form MAC algorithm. Transposed FIR filter uses a much larger number of slices then
SDA filter, but processing all data samples in parallel, at the data sample rate (24MHz). This
filter is the fastest among all implemented FIR filters.

Shift
register

FIR_IN

1/2

Rejestr

+

+

LUT_1

LUT_2

LUT_3

LUT_4

+

+

+

+

+

+

Reg

Reg

Reg

FIR_OUT

16
Q_Sig(0)

Q_Sig(1)

Q_Sig(2)

Q_Sig(3)

Q_Sig(4)

Q_Sig(5)

Q_Sig(6)

Q_Sig(7)

Q_Sig(8)

Q_Sig(9)

Q_Sig(10)

Q_Sig(11)

Q_Sig(12)

Q_Sig(13)

Q_Sig(14)

Q_Sig(15)

20

20

20

20

LUT_Sig_1

LUT_Sig_2

LUT_Sig_3

LUT_Sig_4

21

21

Add_Sig_1

Add_Sig_2

22

Add_Sig_3

23

Sum_Reg

Sum_Sig

23

Out_Reg

22

Serial-parallel
register 16

Reg_Sig

Sum_Sig(0)

New_Data

CLK

CLK

CLK

CLK

CLK

CLK

Counter

CLK

New_Data

Reg

Reg

Shift
register

Shift
register

Shift
register

Shift
register

Shift
register

Shift
register

Shift
register

Shift
register

Shift
register

Shift
register

Shift
register

Shift
register

Shift
register

Shift
register

Shift
register

Fig.9 Block structure of serial DA implementation of a 16-tap FIR filter

3. CONCLUSIONS

The FIR filters implemented in Virtex-II FPGA provide the designer tremendous flexibility
in terms of the number of filter taps and changes in existing coefficients. This paper has described
how FIR filters can be implemented on FPGA devices. We can use different techniques to
implement such filters. The FIR filters implemented were tabulated for reference and guidance in
Table 2. It has been shown that SDA technique provides the best trade-off between speed and
resource requirements and is very efficient to implement. Synthesis results have indicated that a
16-tap parallel transposed filter operating at 24 MHz can be realized. It is expected that the
sample rate can be further increased by optimizing placement and routing. The MAC function
can be implemented more efficiently with Distributed Arithmetic techniques then with
conventional arithmetic methods. DA can make extensive use of look-up tables, which makes it
ideal for implementing DSP functions in LUT-based FPGAs and this technique exhibits
efficiency in terms of area. Parallel implementation shows a very good sample rate. This
technique is the best choice for implementing FIR filters w FPGAs. Future work will be
concentrated on experiments with parallel Distributed Arithmetic (PDA) to increase the overall
performance of serial Distributed Arithmetic.

REFERENCES

1. M.M. Eshtawie, M. Othman, Distributed Arithmetic Implementation of an Optimized Raised
Cosine FIR Filter Coefficients, ICSP2006 Proceedings, vol.1, pp. 16-20, 2006.

2. S. Wang, B. Tang, J. Zhu, Distributed Arithmetic for FIR Filter Design on FPGA, ICCCAS
2007, pp. 620-623, 2007.

3. G.R. Goslin, A Guide to Using Field Programmable Gate Arrays (FPGAs) for Application-
Specific Digital Signal Processing Performance, v.1.0, Xilinx, 1995.

4. M.J. Schulte, P.I. Balzola, A. Akkas, R.W. Brocato, Integer Multiplication with Overflow
Detection or Saturation, IEEE Transactions on Computers, vol.49, pp. 681-691, 2000.

5. F.C. Cheng, S.H. Unger, M. Theobald, Self-Timed Carry-Lookahead Adders, IEEE
Transactions on Computers, vol.49, pp. 659 – 672, 2000.

6. V. Pasham, A. Miller, K. Chapman, Transposed Form Filters, Xilinx Applicaton Note, 2001.
7. K. Wiatr, E. Jamro, Układy mnożące przez stały współczynnik implementowane w układach

programowalnych FPGA, Kwartalnik Elektroniki i Telekomunikacji 2/2001, ss. 233-253,
2001.

8. K. Wiatr, E. Jamro, Implementacja szybkich układów mnożących w strukturach FPGA,
Kwartalnik Elektroniki i Telekomunikacji 4/2001, ss. 495-514, 2001.

9. K. Chapman, Constant Coefficient Multipliers for the XC4000E, Xilinx Applicaton Note,
1996.

